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1. Introduction

These notes are an expanded version of the transcripts I made during
the discussion sessions at the workshop “Theory of motives, homotopy
theory of varieties, and dessins d’enfants” held at the American Insti-
tute of Mathematics in Palo Alto, California. Thanks go to Gunnar
Carlsson and Rick Jardine both for organizing the workshop and for
giving me the opportunity to write these notes. Melanie Wood, Layla
Pharamond and Bruno Kahn have helped me a lot during the prepa-
ration of these notes. I am responsible for all mistakes and errors that
remain.

2. Discussion Session One: Open Problems in the Fields

2.1. The Madsen-Tillmann-Weiss equivalence.

Question 2.2 (Gunnar Carlsson). Is there an algebraic way of an-
alyzing mapping class groups as in the work [MW02] of Madsen and
Weiss? In other words, is there an algebraic proof of the Mumford
conjecture [Mum83]?

The problem is that the process of gluing along the boundaries is
a topological, not an algebraic construction. Instead of considering
orientable surfaces of genus g with n boundary components, one can
consider smooth projective irreducible curves over C of genus g with
n marked points (the collapsed boundaries). Gluing boundaries then
corresponds to gluing at marked points – which leads to curves with
singularities (nodes). This can be done algebraically, given that one
passes from the moduli space Mg,n of smooth curves to its Deligne-

Mumford compactification Mg,n, which contains certain singular curves
as well. Gluing a disk along a boundary then corresponds to forgetting
a marked point, so the result is the Grothendieck’s “game of Lego c©”
on the Teichmüller tower.

Question 2.3 (Marc Levine). Does compactification lose homotopy
information?
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For example, M0,4 = P1r{0, 1,∞} which has nontrivial fundamental

group, as opposed to M0,4 = P1. Here is a program which could supply
an answer to 2.2.

(1) Describe gluing on mapping class groups algebraically, to pro-
vide an algebraic “game of Lego c©”.

(2) Use this for an algebraic version of the work of Madsen, Till-
mann and Weiss.

(3) Compute the self-maps of this construction and compare it with
GQ.

Question 2.4 (Jack Morava). Does some version of ĜT act on the
integral cohomology H∗(BΓ+∞;Z)?

According to Florian Pop, this is not the case, since ĜT is a profinite
completion. However, it may act on H∗(BΓ+∞;Z/n). For the latter, one
should consider [Gal04].

2.5. Representations of ĜT.

Question 2.6 (Igor Kriz). Is there a Langlands correspondence between
modular functions and representations of GQ?

The question also makes sense if GQ is replaced by ĜT, or rather Λ,

the version of ĜT incorporating moduli spaces for all genera.

Question 2.7 (Leila Schneps). Are mixed Tate motives the same as

representations of the pro-unipotent completion of ĜT (or Λ)? In other
words, is the Lie algebra associated to the pro-unipotent completion of

ĜT the free Lie algebra on odd generators e2k+1 of dimension 2k+1 >
1? These generators correspond to the values ζ(2k+1) of the Riemann
zeta function.

Remark 2.8. One knows that the Lie algebra associated to ĜTpro−unip.
is free [Sch04a]. In this context, one could mention many names, like
Deligne, Ihara, Goncharev, Hain, Zagier, . . . .

2.9. Cohomology of moduli spaces.

Question 2.10 (Rick Jardine). What do we know about the étale or
motivic cohomology of the moduli spaces Mg?

Faber’s conjecture [Fab99] gives an explicit description of the subring
of the rational Chow ring CH∗(Mg) ∼= ⊕∞n=oHn,n

mot(Mg,Q) generated by
the tautological elements. In fact, one believes that they generate the
whole Chow ring. The inclusion

Mg
⊂ - colim

g→∞
Mg =: M∞
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induces a map on singular cohomology

H∗(M∞;Q) - H∗(Mg;Q).(1)

The left hand side of (1) is known to coincide with the rational coho-
mology of the stable mapping class group, hence

H∗(M∞;Q) ∼= Q[κ1, κ2, . . .].

The right hand side of (1) is not known explicitly, although certain
vanishing results hold at least for the tautological ring [Loo95].

In this respect, it would be interesting to consider the Galois action
of GQ on the cohomology.

Question 2.11 (Marc Levine). Does the GQ-action on κi ∈ H∗(Mg,n)

factor through the cyclotomic character? Does a ∈ Ẑ× act on κi by
aiκi? What can be said about the action on the other elements? Is it
trivial?

2.12. The dreaded tangential basepoint. Bloch’s cycle complex
(see [Lev04a]) produces a differential graded algebra whose modules
give the category of mixed Tate motives over Q (in fact, over every
number field).

Question 2.13 (Marc Levine). Is there a homomorphism of differen-
tial graded algebras, corresponding to a tangential basepoint in P1 r

{0, 1,∞} at 0, which on cohomology induces the specialization map?
In other words, is there a change-of-tangential-basepoint-construction
(which is functorial in some derived category) modeling the specializa-
tion map?

According to Bertrand Toen, Markus Spitzweck can do this.

2.14. The section conjecture.

Question 2.15 (Leila Schneps). In how many ways can you find lifts
in the diagram

Aut(πalg1 P1 r {0, 1,∞})

GQ -

-

Out(πalg1 P1 r {0, 1,∞})
?

where the lower homomorphism is the canonical one (see [Sch04b])?
More precisely, are all of these lifts given by specifying an element of
P1 r {0, 1,∞} and a tangential basepoint?
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Remark 2.16. One knows that specifying the data mentioned deter-
mines such a section (in fact, for any curve). The question is whether
all sections arise in this fashion. Among other things, the survey ar-
ticle [NTM01] explains the connection to the Tate conjecture (proven
by Faltings in [Fal83]).

Question 2.17 (Marc Levine). Let p : E - B be a fiber bundle and
fix a basepoint e0 ∈ E. Does the homomorphism π1E - π1B allow
other sections besides those induced by sections B - E of p?

According to Florian Pop, if the answer is “yes”, both base and fiber
of the bundle have to be fairly complicated.

2.18. Maps in étale and motivic cohomology.

Question 2.19 (Jordan Ellenberg). Do cohomological constructions

built from πalg1 have motivic interpretations? In other words, do maps
in étale cohomology come from motivic cohomology”

According to Marc Levine, this depends on the situation. One prob-
lem is that images of motives don’t exist in general, since motives don’t
form an abelian category (see [Lev04b]). For precise maps, see 4.10.

2.20. p-adic K-theory.

Question 2.21 (Wieslawa Niziol). Let p be a prime and let V be a

variety over Ẑp with smooth generic fiber. How are the K-theories

K(V,Z/pnZ) and G(V,Z/pnZ)(2)

related? If W - V is a blow-up centered in the special fiber, how
are the K-theories K(W ) and G(W ) related?

One knows by [Qui73] that K(V,Z/pnZ) ∼= G(V,Z/pnZ) if V is
regular. A similar statement exists for a blow-up centered in a closed
subscheme corresponding to a regular ideal (see [TT90]). From the
localization sequence, one can deduce that both the kernel and the
cokernel of the map

G(V,Z/pnZ) - G(V ⊗Ẑp
Qp,Z/p

nZ)

are annihilated by a single Bott element. So probably K and G differ
by a power of p or a Bott element. For the second question, one should
mention Haesemeyer’s work [Hae03] that homotopy K-theory satisfies
cdh-descent for all schemes over a field of characteristic zero.
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2.22. A conjecture from a lecture. The following conjecture was
mentioned in [Sch04b].

Conjecture 2.23 (Parker, 1984). A Galois dessin D (meaning that
the corresponding covering is Galois) is given by a group having two
generators a, b. Consider the element

P :=
∑

g∈G
(g−1ag, g−1bg)

which acts on the rational group ring Q[G×G] (considered as a Q-vector
space) by right multiplication. Hence there is an associated matrix MP .
The conjecture is that the field of moduli of D (see 4.5) is given by
adjoining all the eigenvalues of MP to Q.

So far, the conjecture has been verified only in abelian cases. Several
other conjectures have been mentioned in other lectures, for example
the Beilinson-Soulé vanishing conjecture in [Lev04a], Grothendieck’s
standard conjectures in [Kah04] . . . .

3. Discussion Session Two: Examples and Speculations

3.1. Melanie Wood. An element σ ∈ GQ has to commute with any
map g : X - Y of algebraic curves over Q, and hence also with
the induced map πalg1 (g) : πalg1 (X) - πalg1 (Y ). One can write down

what it means for σ to commute with πalg1 (g). In particular, if the GQ-
action on the algebraic fundamental groups of X and Y is known (for

example through the ĜT-action), one can write down the commutation
condition explicitly. This leads to relations that (λ, f) ∈ GQ must

satisfy and defines subgroups between GQ and ĜT.

Example 3.2. Let

g : P1 - P1

t - −27

4
(t3 − t2)

be the map corresponding to the cyclic permutation of {0, 1,∞} ⊂
P1. One has g−1(0) = {0, 1}, g−1(1) = {−1

3
, 2
3
} and g−1(∞) = {∞}.

Ramification occurs only at 0 and 1, hence the induced map

P1 − g−1({0, 1,∞}) - P1 r {0, 1,∞}
is unramified. (The associated dessin

◦ • ◦ •
is fairly simple.) From the diagram

P1 r {0, 1,∞} ¾⊃ P1 r g−1({0, 1,∞}) g- P1 r {0, 1,∞}
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and the action of (λ, f) on πalg1 (P1 r {0, 1,∞}), one deduces three
relations, one of them being the relation

f(x2, y) ≡ y−ρ3fσx
3ρ3−6ρ2 mod y2, z3.(3)

Here ρa is the Kummer cocycle corresponding to a (which depends only
on the cyclotomic character λ).

Similarly, we can write down tons more of these relations by consid-
ering other functions defined over Q. Many are longer, many follow
from others, but plenty don’t follow obviously from the relations I, II

and III defining ĜT that were discussed in [Sch04b]. Since dessins are

just conjugacy classes of subgroups of πalg1 (P1 r {0, 1,∞}), relation (3)
also gives an invariant on dessins.

Example 3.3. Consider the map

h : P1 - P1

t - 27

4

t2(t− 1)2

(t2 − t+ 1)3

defined over Q. Since σ commutes with h, the dessins

• ◦ • ◦ • ◦ ◦ •(4)

and

◦ • ◦ • ◦ • • ◦(5)

can be shown to lie in different Galois orbits. The dessins (4) and (5)
have the same vertex degree lists, monodromy groups, cartographic
groups, automorphism groups, rational Nielsen classes and other known
computable invariants. The dessin invariant that separates the Galois
orbits is gotten as follows: Take a dessin D (here of genus zero) and
the associated Belyi map

βD : P1(C) - P1(C).
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Composing with the map h defines a new Belyi map h(C) ◦ βD, hence
a new dessin h(D). It is obtained from D by copying the dessin of h
on every edge of D. Since h is defined over Q, the monodromy group
of the new dessin is a GQ-invariant. For the dessin (4), the new dessin
has a monodromy group of size 2 · 1030, while the monodromy group of
the dessin derived from dessin (5) has size 2 · 1013.

Observe that dessin (4) has symmetry with respect to the cyclic
permutation 0 - 1 - ∞ - 0. The map g listed in 3.2 is
the quotient map having domain P1 r {0, 1,∞} with respect to this
symmetry. The map h listed in 3.3 is the quotient map with respect
to the full symmetric group Σ3. The dessins in this example were not
constructed systematically, but chosen as the first thing that worked
in a search guided by some “symmetry” heuristic.

3.4. Dan Dugger. Let k be a field and let Q be either the projective
quadric

a1b1 + a2b2 + . . .+ ambm = 0 or a1b1 + a2b2 + . . .+ ambm + c2 = 0

in Pn. So either n = 2m − 1 or n = 2m. Set DQn := Pn − Q.
The ultimate goal is to compute H∗,∗

mot(DQn;Z). However, very little is
known about that. Instead, let’s compute H∗,∗

mot(DQn;Z/2).

Remark 3.5. The computation will imply certain conditions for a
sum-of-squares formula in odd characteristic, which was previously
known only for characteristic zero. See [DI03] for details.

To get an idea of what the result might be, it is usually helpful to
assume k = C and calculate the singular cohomology of the topological
space DQn(C) = CPn r Q(C). This space is homotopy equivalent to
RPn. To see this, note that by changing coordinates

aj - x2j−1 + ix2j

bj - x2j−1 − ix2j

c - xn+2 (if necessary)

Q is isomorphic to the projective quadric x1 + x2 + . . .+ xn+2 = 0. In
particular, RPn embeds in CPn−Q(C). The space CPn−Q(C) admits
a covering of degree two given by the affine quadric X = a1b1 + a2b2 +
. . . ambm = 1. The change of coordinates transforms X into the affine
quadric x21 + . . . + x2n+2 = 1. In particular, Sn embeds in X such that



8 OLIVER RÖNDIGS

the diagram

Sn ⊂ - X

RPn
?

⊂- CPn r Q(C)
?

commutes, where the vertical maps are the canonical ones. Shrinking
the imaginary part of the xj’s then gives a deformation retraction of
X to Sn which is compatible with the deck transformation action. In
particular, it descends to a deformation retraction of CPn r Q(C) to
RPn. Hence we know the singular cohomology of CPnrQ(C). However,
to lift a computation (there are many) of the singular cohomology of
this space to motivic homotopy theory, one should use “the right”
computation. Here is one that works. The embedding Q(C) ⊂ - CPn

induces the following map H∗(Q(C);Z) - H∗(CPn;Z) on singular
homology with integer coefficients.

2n 0 - Z

2n− 1 Z
×2 - Z

...
...

...
...

1

2
dim(Q) + 1 Z

×2 - Z

1

2
dim(Q) 0 or Z⊕ Z

0 or fold map - Z

1

2
dim(Q)− 1 Z

id - Z

...
...

...
...

1 Z
id - Z

0 Z
id - Z

Both of the spaces involved are smooth closed manifolds, so by Poincaré
duality, one knows the map H∗(CPn;Z) - H∗(Q(C);Z) on singular
cohomology. The singular cohomology of CPn − Q(C) can then be
computed via the Gysin sequence, which ends the discussion of the
topological computation.

The integral motivic cohomology of anything is a module over the
coefficient ring H∗,∗

mot(Spec(k);Z) =: M, which is big and unknown.
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Roughly it looks as follows:

...
...

...
...

...
...

...

· · · × × × × × KMil
3 (k) 0 · · ·

· · · × × × × KMil
2 (k) 0 0 · · ·

· · · 0 0 0 k× 0 0 0 · · ·

· · · 0 0 Z 0 0 0 0 · · ·

q

6

p -

· · · 0 0 0 0 0 0 0 · · ·
The Beilinson-Soulé vanishing conjecture asserts that the second quad-
rant is zero. Suppose from now on that char(k) 6= 2 and define
M2 := H∗,∗

mot(Spec(k);Z/2). There is a short exact sequence

0 - M
0,1
2

- k×
×2- k× - M1,1 - 0(6)

Hence there is a class τ ∈ M
0,1
2
∼= Z/2 mapping to −1 and a class

ρ ∈ M
1,1
2 which is the image of −1. This allows us to state the result

of the computation.

Theorem 3.6. The ring H∗,∗
mot(DQn;Z/2) is a quotient of the ring

M2[a, b], where a is a generator of degree (1, 1) and b is a generator
of degree (2, 1). If n is even, the relations are a2 = ρa+τb and bm = 0.
If n is odd, there is an additional relation: there is an element ε ∈ M

1,1
2

such that abm−1 = εbm−1

We will say more about ε later.

Remark 3.7. In fact, one can prove that DQ2n−1 has the motivic ho-
motopy type of (An r {0})/{+1,−1}. The computation of the motivic
cohomology of the latter in the stable case has been used by Voevod-
sky in the construction of the motivic Steenrod algebra for p = 2
(see [Voe03b] and [Voe03a]).

To sketch the proof of 3.6, consider the closed subscheme Z of Q
given by a1 = 0. The complement of Z in Q is isomorphic to An−1.
Further, one can show thatX is the projective cone on a smaller quadric
Q−1. Hence Z has a singular point, the cone point ∗, and the canonical
projection p : Z r {∗} - Q−1 is a line bundle. In particular, p
is a motivic weak equivalence (see 5.2). The closed embedding i : Z r

{∗} ⊂+- Qr{∗} of smooth schemes over k leads to a homotopy cofiber
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sequence

An−1 ∼= Q r Z ⊂ ◦- Q r {∗} - Th(i)(7)

by 5.4. Since An−1 is contractible, the map Q r {∗} - Th(i) is a
motivic weak equivalence. Thus

H∗,∗
mot(Q r {∗};Z) ∼= H∗,∗

mot(Th(i);Z)
∼= H∗−2,∗−1

mot (Z r {∗};Z)
∼= H∗−2,∗−1

mot (Q−1;Z)

where the second isomorphism is the Thom isomorphism. Similarly, the
closed embedding {∗} ⊂+- Q leads to the homotopy cofiber sequence

Q r {∗} ⊂ ◦- Q - An−1/An−1 r {0}(8)

which induces the Gysin (or localization, or purity) long exact sequence
in motivic cohomology. One gets that H∗,∗

mot(Q;Z) is a free M-module.
This corresponds to the decomposition of the motive of Q into Tate
motives Z(q). The last step is the homotopy cofiber sequence

Pn r Q ⊂ ◦- Pn - Th(c)(9)

for the closed embedding c : Q ⊂ +- Pn. The induced map on the
motivic cohomology H∗,∗

mot(Th(c);Z) - H∗,∗
mot(P

n;Z) is then

(2n, n) M
id - M

(2n− 2, n− 1) M
id - M

...
...

...
...

M
id - M

(n,
n

2
) 0 or M⊕M

0 or fold map - M

M
×2 - M

...
...

...
...

(4, 2) M
×2 - M

(2, 1) M
×2 - M

(0, 0) 0 - M.

Due to extension problems, we cannot determine the integral motivic
cohomology of Pn − Q, since M might have lots of 2-torsion and 2-
cotorsion. In M2, multiplication with 2 is zero, which immediately
gives the additive structure. Extension problems for the multiplicative
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structure can be resolved using the Bockstein β : Hp,q
mot

- Hp+1,q
mot .

Note that β(a) = b.

Remark 3.8. Concerning the mysterious element ε ∈ M
1,1
2 which ap-

peared in 3.6, note that abj is a class of degree (2j + 1, j + 1). In the
topological situation, one can conclude that this class has to vanish if
j = m− 1. This is not possible in the algebraic situation, since the
motivic cohomology extends a priori all along the diagonal. If n is even,
one can actually prove that abj is zero, but if n is odd, one can show
only that abm−1 = εbm−1 for some ε ∈ M

1,1
2 . Note that if every element

of k is a square, then M
1,1
2 is zero by (6). A suggestion by Marc Levine

is to use étale realizations in order to find out whether ε is non-zero
in general. Bruno Kahn’s suggestion is to use étale descent, since for
algebraically closed fields, ε is zero.

3.9. Jack Morava. The ideas presented here are motivated by Soule’s
report [Sou99] and the expansion [Sou04]. Certain formulas from rep-
resentation theory over a finite field Fq have a well-defined limit when
q → 1. For example, the number of Fq-points of a Chevalley group
scheme G over Z converges to the number of points in its Weyl group
W . To be more concrete, choosing G = GL∞ gives W = Σ∞, the in-
finite symmetric group. Hence there is a deep connection between the
K-theory K(Fq) = BGL∞(Fq)

+ and stable homotopy QS0 = BΣ+
∞.

Manin’s speculation in this direction (see [Man95]) is that Spec(Z)
should be an affine curve over something absolute, say Spec(F1) (the
field with one element). This looks like Waldhausen’s program con-
cerning the map

S - HZ(10)

of ring spectra. Here S denotes the sphere spectrum (S0, S1, S2, . . .)
(see [Jar04a]) and HZ is the Eilenberg-MacLane spectrum of the in-
tegers. Waldhausen’s goal is to do algebra over S. It seems that the
algebraic geometers are trying to invent the sphere spectrum!

In [Sou99], Soulé speculates, motivated by Beilinson’s conjecture

ExtMTMZ(Z,Z(n))
∼= K2n−1(Z)(11)

that there is a category of absolute Tate motives over F1 such that

ExtMTMF1
(Z,Z(n)) ∼= π2n−1(QS

0) = πs2n−1S.(12)

However, the analogy is not that good. There is an algebraic K-
theory of ring spectra, defined by Waldhausen [Wal85], which in the
special case of the sphere spectrum gives K(S) = A(∗). This K-theory
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splits as

K(S) ∼ QS0 ×WhDiff(∗)(13)

with the second factor being the 2-fold delooping of the stable smooth
pseudoisotopy space [Wal87]. Another good thing about K(S) is that
according to [Wal84] the map (10) induces a rational equivalence on
the K-theories, with K(HZ) = K(Z) (of course).

The correct version of (12) should then be

ExtMTMS(Z,Z(n))
∼= K2n−1(S)

or, more precisely and generally, for any ring spectrum M there should
be a spectral sequence

ExtiMTMS
(S,M(q))⇒ K2q−1(M)

of Ext-goups in a category of absolute Tate motives over S.

Question 3.10 (Jack Morava). Is there a category of motives over S?

Another question in this direction is to what extent algebraic geom-
etry can be done over the sphere spectrum. For example, one can say
what Pn

S is and compute its K-theory [Hüt02]. The constructions of
that work can be extended to study toric varieties over S. On the other
hand, there is the abstract approach [TV03].

4. Discussion Session Three: Examples and Questions

4.1. Layla Pharamond. Consider the dessin

◦
??

??
??

??

• • ◦ •

◦

ÄÄÄÄÄÄÄÄ

(14)

on a surface of genus zero. Since it has six edges, the total ramification
degree is six. The list of ramification indices is

0 4,1,1
1 4,1,1
∞ 2,4

as one can read off the dessin. From a dessin one can construct a Belyi
pair (C, f), where C is a smooth irreducible projective curve over Q
and f : C(C) - P1(C) is a holomorphic function all of whose critical
values lie in {0, 1,∞} ⊂ P1(C). The dessin is then given up to isotopy
by the preimage under f of the interval

0 = • ◦ = 1.
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The function f is unique up to an automorphism of P1. In particular,
one can choose the function f such that a ∈ f−1(a) for a ∈ {0, 1,∞}.

Since f is a rational function, the ramification indices imply that

f(z) = λ
(z − a)4(z2 + bz + c)

(z − d)2(z − e)4
.(15)

Choosing a = 0 as the ramification point above 0 of order 4 and ∞ as
the ramification point above ∞ of order 4 simplifies (15) to

f(z) = λ
z4(z2 + bz + c)

(z − d)2
.(16)

Requiring that 1 is the ramification point above 1 of order 4 implies that
(z − 1)4 is a factor of f(z)− 1, which gives a system of four equations
with four indeterminates λ, b, c and d. In this example, they can all be
expressed in terms of α, where α2 = 5. Choosing the solution α =

√
5

gives the Belyi function

f(z) = −2z4(2
√
5z2 + 2(1− 3

√
5)z − 5(1−

√
5))

2(
√
5z − (1 +

√
5))2

(17)

for dessin (14).

Remark 4.2. Choosing the solution α = −
√
5 gives a Belyi function

whose dessin is

•

◦ • ◦ ◦

ÄÄÄÄÄÄÄÄ

??
??

??
??

•

(18)

The problem of choosing the correct solution for a given dessin is not
completely solved.

From the equation (17), one sees immediately that the field of defini-
tion (see 4.3) of the function f (and hence of the dessin (14)) is Q(

√
5).

Of course the same is true for (18). Now consider the rational function

g(z) =
z6 − 4z5 + 20z3 + 10z2 + 12z + 2

25z2
(19)

with field of definition Q. It is ramified over { 1+
√
5

2
, 1−

√
5

2
,∞} ∈ P1, and

the preimage g−1([1−
√
5

2
, 1+

√
5

2
]) gives precisely the dessin (14). Hence

the field of moduli (see 4.5) of dessin (14) is Q. Perhaps now it is time
for precise definitions (see also [CG94]).
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Definition 4.3. Suppose a dessin D with Belyi pair (C, f) is given.
Let E be a number field and fE : CE

- BE be a morphism of curves
over E. If fE ⊗E Q coincides with f : C - P1, then fE is a model of
the dessin D, and E is a field of definition of D.

Remark 4.4. Although in this case the genus of BE is zero, it does
not have to be P1. In fact, every conic can appear as the base of a
model of a dessin.

If (C, f) is a Belyi pair (hence defined over Q) and σ ∈ GQ, base
change of f along Spec(σ) : Spec(Q) - Spec(Q) determines a new
Belyi pair (Cσ, fσ). On the level of dessins, write D - Dσ.

Definition 4.5. Let (C, f) be a Belyi pair corresponding to the dessin
D. Consider the subgroup MD of GQ given by those σ ∈ GQ for which

there exists an isomorphism uσ : C
∼=- Cσ and an automorphism

vσ : P1
∼=- P1 such that the diagram

C
uσ
∼=
- Cσ

P1

f
? vσ

∼=
- P1

fσ
?

commutes. That is, fσ is weakly isomorphic to f . The field of moduli
kD of D is the fixed field of this subgroup MD.

If the automorphism vσ in 4.5 can be chosen as the identity, one says
that fσ is strongly isomorphic to f . The fixed field KD of the subgroup
given by those σ is a field of definition. In particular, the field of moduli
of a dessin D is contained in the intersection of all fields of definition
of D. To prepare a systematic study of the difference between these
two fields, let Σ = Σ0,1,∞ denote the group of permutations of the set
{0, 1,∞}. Note that every such permutation α gives rise to a unique
automorphism sα : P1 - P1 which is in fact defined over Q. In
particular, Σ acts on the set of dessins of genus zero by mapping the
Belyi pair (C, f) to the Belyi pair (C, sα ◦ f).

Example 4.6. Consider the permutation α ∈ Σ which fixes 1 and
interchanges 0 and ∞, and the dessin D

◦ • ◦(20)
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The dessin α ◦D is obtained as follows. First choose a point ? (corre-
sponding to a preimage of ∞) in every open cell of the dessin.

?

◦ • ? ◦

(21)

Then connect the ?’s via edges with the vertices of the dessin, following
the edges of the given dessin in the cyclic fashion determined by the
ordering at each vertex.

?

◦

ÄÄÄÄÄÄÄÄ • ? ◦

(22)

This gives a triangulation of the surface. Now interchange the vertices
according to the permutation α

•

◦

ÄÄÄÄÄÄÄÄ ? • ◦

(23)

and forget all ?’s, as well as all the edges leading to them. The result
is the dessin α ◦D

◦ • ◦ •.
Definition 4.7. Let D be a dessin. Define subgroups

AD := {α ∈ Σ|D is strongly isomorphic to α ◦D}
BD := {α ∈ Σ|∃σ ∈ GQ s.t. Dσ is strongly isomorphic to α ◦D}

of the symmetric group. Obviously AD is a subgroup of BD, and it is
always a normal subgroup.
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Proposition 4.8. The Galois group Gal(KD/kD) is canonically iso-
morphic to the quotient group BD/AD.

For a proof of 4.8 consider [Pdd01]. Proposition 4.8 gives a method of
deciding whether KD is different from kD. For the dessin D in (14), AD

is the trivial subgroup, while BD consists of the identity permutation
and the transposition τ interchanging 0 and 1. Note that τ ◦D is the
dessin (18). Other examples, including a field extension of maximal
degree, can be found in [Pdd01].

Remark 4.9. A necessary condition for KD 6= kD is that the list
of ramification indices agrees for (at least) two points. In case all
ramification index lists agree, the Riemann-Hurwitz formula implies
that the degree of f is congruent to 2(g− 1) modulo 3. One can check
the possibilities for low degrees; the result is that KD 6= kD doesn’t
happen too often. So far, there is no recipe for producing all examples.

4.10. Jordan Ellenberg. Let X be a smooth algebraic curve over a
number field k. The curve does not have to be proper. Choosing a
base point x0 ∈ X(k) gives a short exact sequence

1 // πgeo1 (X, x0) // πalg1 (X, x0) // Gk
//

s0

^^
1(24)

with splitting induced by the basepoint. For each other x ∈ X(k), the

section sx : Gk
- πalg1 (X, x) defines a homomorphism

X(k) - H1(Gk, π
geo
1 (X, x0))

x - [sxs
−1
0 ].

Remark 4.11. Note that sxs
−1
0 is indeed a cocycle. In fact, one should

view the homomorphism sx as having target πalg1 (X, x0), which is pos-
sible up to conjugation induced by changing the basepoint. This con-
jugation does not affect the cohomology class of sxs

−1
0 .

The Section Conjecture 2.15 is about the surjectivity of the map

X(k) ∪ {tangential basepoints} - H1(Gk, π
geo
1 (X, x0)).

Later we will see that it should be injective. One problem in the sur-
jectivity is that πgeo1 (X, x0) is too huge. To make it smaller, set

π′ := πgeo1 (X, x0)
pro−` and π := π′

/[
π′, [π′, π′]

]
.(25)
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In words, π is the maximal pro-` 2-nilpotent quotient of πgeo1 (X, x0).
There is a central extension

1 - U`
- π - πab = H1(X,Z`) - 1(26)

where the `-adic group U` is a quotient of ∧2πab. Using the projection
πgeo1 (X, x0) - π, there results a homomorphism

X(k) - H1(Gk, π).

If J is the generalized Jacobian of X – so π1(J) = πab1 (X) – , this
homomorphism fits into the commutative diagram

x X(k) - H1(Gk, π)

[x− x0]
?

J(k)
?

- H1(Gk, π
ab)

?

H2(Gk, U`).

δ
?φ -

Here the vertical map on the left hand side is the Abel-Jacobi map,
whereas the vertical maps on the right hand side come from the central
extension (26). To study φ and the image of X(k) in kerφ, observe first
that, since U` is a quotient of ∧2πab, the form φ(x+ y)−φ(x)−φ(y) =
x ∪ y is bilinear. Hence if ` 6= 2, φ has the form φ(x) = 1

2
(x ∪ x) +

linear term. To what extent is this obstruction useful?
As Marc Levine explained in [Lev04a] and [Lev04b], H1(Gk, π

ab) can
be thought of as the étale realization of

Ext1mot(Z, H1(X)) = HomDM(Z, H
mot
1 (X)[1]).

Similarly U` should be the realization of Umot, which in turn is some
piece of Hmot

2 (X ×X).

Question 4.12 (Jordan Ellenberg). Is there a motivic map

Ext1(Z, H1(X))
δmot- Ext2(Z, Umot)

whose étale realization is δ?

Remark 4.13. According to the Beilinson-Soulé vanishing conjecture,
Ext2 should be zero in the derived category of mixed Tate motives with
rational coefficients (see [Lev04b]). However, Umot will in general not
be a Tate motive.

Question 4.14. Could Imδmot (if it exists) or Imδ be just torsion?
Should Ext2(Z,M) be zero also if M is not a Tate motive?
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Example 4.15. As an example, consider X = P1 r {0, 1,∞} with a
tangential basepoint. The Jacobian is J = G2

m, π
ab = (Z`(1))

2, π is a
Heisenberg group and U` = Z`(2). Since Ext2 here is the torsion of K2

of a number ring, it vanishes rationally. The Abel-Jacobi map has the
form

X(k) = k r {0, 1} - k× × k× = J(k)

x - (x, 1− x)

and φ maps (a, b) to the symbol {a, b} ∈ KMil
2 (k)/` = H2(Gk,Z/`(2)).

Note that here we switched from Z`-coefficients to Z/`-coefficients,
since Florian Pop pointed out that H2(Gk,Z`(2)) = 0.

There are cases where one can show something about curves over
local fields. In particular, the obstruction given by φ can be non-zero.
The relation between δ and the Neron-Tate map for the local part
deserves to be worked out. Going more steps down the lower central
series gives further obstructions which are related to Massey products.

Question 4.16 (Marc Levine). How can the central extension (26) be
done motivically?

4.17. Bruno Kahn. Let X be a smooth affine curve over C. Then
the topological space X(C) is an Eilenberg-MacLane space K(π, 1) for
some group π.

Question 4.18 (Bruno Kahn). Suppose X is a smooth affine curve
over a subfield k ⊂ - C of the complex numbers. What is the relation
between X regarded as an object in the motivic stable homotopy category
SH(k) and the classifying space Bπ1(X(C))?

The origin of this question is part 3 of [Voe00, 3.4.2]. Note that the

étale realization of such an X is the classifying space for πalg1 (X). To
understand what might happen in SH(k), consider the motive M(X) ∈
DMeff

gm(k) first. Suppose (for simplicity, it works also in general) that
x ∈ X(k) is a rational point. Then there exists a morphism X - J ,
where J is the generalized Jacobian of X. One can show that J is
homotopy-invariant and has transfers. Hence there exists a lift in the
diagram

X - J

L(X)
?

-

where L(X) is the representable sheaf with transfers generated by X
(see for example [Voe98] or [Lev04a]). By definition, M(X) = C∗L(X)
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is the Suslin complex of L(X) using the cosimplicial scheme consid-
ered for example in [Lev04a]. Since J is homotopy-invariant, one has
C∗(J) ∼= J . The result is a map M(X) - J which is basically an
isomorphism, since X is an affine curve. Details can be found in [SS03].

On topological fundamental groups, the map X - J induces the
map π1X(C) - π1J(C) = πab1 X(C). That is, we can interpret
πab1 (X) in terms of motives. What about the whole π1?

Lemma 4.19. Let G be a free group, set G0 := G and let Gn+1 :=
[Gn, Gn] be the terms in the derived series. The canonical map of spec-
tra

Σ∞BG - holim
n

Σ∞B(G/Gn)

is a weak equivalence.

Proof. To prove this, we will calculate the map on the level of stable
homotopy groups. Using the Atiyah-Hirzebruch spectral sequence, it
suffices to prove that for any abelian group A (that one should think
of as πsi (S

0))

Hi(G,A) ∼= lim
n
Hi(G/Gn, A)(27)

lim1Hi(G/Gn, A) ∼= 0(28)

for all i. In fact, it suffices to prove this for A = Z. The Hochschild-
Serre spectral sequence

Hp(G/Gn, Hq(Gn,Z))⇒ Hp+q(G,Z)(29)

is concentrated in the first quadrant and has the form

...
...

...
...

...

0 0 0 0 0 · · ·

× × × × × · · ·

· · ·

× × ×

¾
d
2

×

¾
d
2

×

¾
d
2

· · ·

q

6

p -

since G is a free group. Most of the d2 differentials are isomorphisms.
To be more precise, the differential

Hp+2(G/Gn,Z)
d2- Hp(G/Gn, G

ab
n )
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is an isomorphism for p ≥ 1. For p = 0 the sequence

0 - H2(G/Gn,Z) - H0(G/Gn, G
ab
n ) - Gab - (G/Gn)

ab - 0

is exact and the diagram

Hp+2(G/Gn+1,Z)
d2- Hp(G/Gn+1, G

ab
n+1)

Hp+2(G/Gn,Z)
? d2- Hp(G/Gn, G

ab
n )

?

commutes. Now the homomorphism Gab
n+1

- Gab
n is trivial, which

implies that

Hi(G/Gn+1,Z) - Hi(G/Gn,Z)

is trivial for i ≥ 2. It follows that the isomorphisms (27) and (28)
hold for i ≥ 2. If i = 1, the homomorphism Gab - (G/Gn)

ab is an
isomorphism for n ≥ 1, which concludes the proof. ¤

Suppose now that G is finitely generated and free, so G = Fn with
generators {e1, . . . , en}. Then G1/G2 is generated by the commutators
[ei, ej] over the group algebra G/G1. Unfortunately, lemma 4.19 does
not hold for the lower central series, because it doesn’t go down as fast
as the derived series. As Florian Pop pointed out, there is no term in
the lower central series which is contained in G2, since it is much too
small.

Question 4.20 (Bruno Kahn). Can you find a motivic structure on
G1/G2 and on the next quotients?

Remark 4.21. According to a conjecture of Ihara, G1/G2 is free on
the commutators [e1, ej] over the group algebra Z[G/G1]. Hence the
motivic structure – if it exists – has weights in every dimension.

Suppose that X - Spec(C) is a good neighborhood in the sense of
Artin (see [SGA73, Exp. XI]). Then X(C) is a K(π, 1) such that π is a
successive extension of free groups. In particular, π is a good group in
the sense of Serre. Lemma 4.19 is motivated by Serre’s proof of Artin’s
comparison theorem (see [SGA73, Exp. XI, Variante 4.6]). However,
it is not clear whether lemma 4.19 will be true for good groups with
the derived series. Maybe one has to use another filtration.

Question 4.22 (Bertrand Toen). As Bruno Kahn explained, the abeli-
an part of the motivic fundamental group is the Jacobian. Is there a
way to realize the full motivic fundamental group without using étale
realization?
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5. Discussion Session Four: Examples

5.1. Dan Isaksen. Here are a few concrete and standard examples of
motivic homotopy calculations over a field k. To understand these, the
precise meaning of motivic space over k (a.k.a. “simplicial presheaf on
Sm/k”) which was discussed in [Jar04a], is not so important. Instead,
one can mostly consider only objects in Sm/k (that is, smooth schemes
of finite type over k) and formal quotients (or colimits) of these. One
example is A1/A1r{0}, the Thom space (A.5) of the trivial line bundle
over k. However, by taking formal colimits of smooth schemes over k,
one forgets the (few) colimits that already exist in Sm/k. For example,
if X ∈ Sm/k is covered by two open subschemes U and V , the map f
appearing in the diagram

U ∩ V ⊂ ◦ - V

U

◦

?

∩

- U
∐

U∩V
V

?

X

⊂

◦

-

f

-

⊂

◦

-

is in general not an isomorphism. This is what the local weak equiva-
lences are for: the map f is a local weak equivalence for the Zariski (and
hence the Nisnevich) topology. In other words, although the square

U ∩ V ⊂◦- V

U

◦
?

∩

⊂ ◦- X

◦
?

∩

is not a pushout square of motivic spaces in general, it is a homotopy
pushout square (A.7). An example of a Nisnevich local weak equiva-
lence which is not a Zariski local weak equivalence is the map g in the
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diagram

A1
C r {(X − i), (X + i)} ⊂◦- A1

C r {(X − i)}

A1
R r {(X2 + 1)}

?
- pushout

?

A1
R.

-

g

-

⊂

◦

-

Here an irreducible polynomial is identified with the closed point it de-
termines in A1

k. The motivic weak equivalences are obtained from the
Nisnevich local weak equivalences by requiring that A1 is contractible.
Vector bundles and, more generally, A1-homotopy equivalences are mo-
tivic weak equivalences.

Example 5.2. Let p : E - B be a vector bundle in Sm/k. Then
p is an A1-homotopy equivalence, with homotopy inverse given by the
zero section s : B ⊂ +- E. The composition p ◦ s is the identity, and
the map H : E × A1 - E which is locally defined by (x, t) - tx
is an A1-homotopy from s ◦ p to idE. As a consequence, p is a motivic
weak equivalence. Here, B is even a strong A1-deformation retract of
E.

Another important example is the A1-homotopy between the cyclic
permutation and the identity map on A3/A3 r {0} which appeared in
Jardine’s lecture [Jar04a].

Example 5.3. Set S1,0 := S1 and S1,1 := Gm. In general, define
Sp,q := Sp−q ∧ G∧q

m where p ≥ q. Since A1 is contractible, there are
weak equivalences

A1/A1 r {0} ∼ S1 ∧Gm = S2,1 ∼ P1

where P1 is pointed by 1. For the latter weak equivalence, one uses the
canonical covering

Gm
⊂ ◦- A1

A1

◦
?

∩

⊂ ◦- P1.

◦
?

∩
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Similarly, one can use the covering

Gm ×Gm
⊂◦- A1 ×Gm

Gm × A1

◦
?

∩

⊂◦- A2 r {0}

◦
?

∩

to conclude that A2 r {0} ∼ S3,2. By induction, one gets the Thom
spaces of the trivial bundles over a point

An/An r {0} ∼ S2n,n.(30)

Concerning the indexing of the sphere Sp,q, p is the dimension and q
is the Tate twist. One can read off these numbers if k = R by taking
complex points, together with the Z/2-action of complex conjugation.
Then p is the dimension of the sphere and q is the number of coordinate
axes where the Z/2-action is nontrivial.

Another important ingredient for calculations in motivic homotopy
theory is the so-called “Homotopy Purity Theorem” of Morel and Vo-
evodsky [MV99, 2.23].

Theorem 5.4. Let i : Z ⊂ +- X be a closed embedding in Sm/k, and
let p : N - Z be the normal bundle of i. Then there are motivic
weak equivalences connecting X/X r i(Z) and the Thom space Th(p).

Example 5.5. Consider P1 r {0, 1,∞} = A1 r {0, 1}. It is an open
subscheme of A1, and by 5.4, the quotient A1/A1 r {0, 1} is weakly
equivalent to the Thom space of the normal bundle associated to the
closed embedding

i : Spec(k)
∐

Spec(k) = {0, 1} ⊂+- A1.

The normal bundle is trivial in this case, hence the Thom space is

{0, 1} × A1/{0, 1} × (A1 r {0}) ∼=
(
A1/A1 r {0}

)
∨

(
A1/A1 r {0}

)
.

On the other hand, since A1 is contractible, the quotient A1/A1r{0, 1}
is weakly equivalent to the unreduced suspension of A1 r {0, 1}. If
k 6= F2, one can choose a basepoint in A1 r {0, 1}, which gives weak
equivalences

S1∧P1r{0, 1,∞} ∼ (A1/A1r{0})∨(A1/A1r{0}) ∼ S1∧(Gm∨Gm).

Hence if we consider motivic spectra instead of motivic spaces, where
smashing with S1 is invertible (up to weak equivalence), there results
a stable equivalence

P1 r {0, 1,∞} ∼ Gm ∨Gm.(31)
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This implies that the motivic cohomology of P1 r {0, 1,∞} has the
form

H∗,∗
mot(P

1 r {0, 1,∞}) ∼= H∗
sing(S

1 ∨ S1)⊗H∗,∗
mot(Spec(k)).

Since the property of having a k-point is invariant under motivic weak
equivalence [MV99, 2.5], relation (31) can not hold unstably if k = F2.

Appendix A. Definitions and Notation

Notation A.1. If E ⊂ - F is a field extension, Gal(F/E) denotes its
Galois group. The absolute Galois group of a field k is denoted Gk.
We are particularly interested in GQ.

Definition A.2. A Belyi pair (X, f) consists of a smooth irreducible
projective complex curve X, together with a holomorphic function
f : X(C) - P1(C) which is unramified outside of {0, 1,∞}. By
Belyi’s theorem, X is then actually defined over Q (see [Sch94]).

Notation A.3. Given a Belyi pair (X, f), the preimage f−1([0, 1]) ⊂
X(C) determines a dessin (see [Sch04b]). We use the convention that
a preimage of zero is denoted •, a preimage of 1 is denoted ◦, and a
preimage of ∞ is denoted ?.

Notation A.4. Usually an open embedding of schemes is denoted
X ⊂ ◦- Y , and a closed embedding is denoted X ⊂+- Y .

Definition A.5. Let p : E - B be a (topological or algebraic) vector
bundle, with zero section s. If p is algebraic, the Thom space of p
is the quotient E/E − s(B) (viewed as a pointed presheaf of some
category of schemes). If p is topological, the Thom space of p is the
quotient D(p)/S(p), where D(p) (resp. S(p)) denotes the associated
disk (resp. sphere) bundle of p. In both cases, the Thom space is
the homotopy-theoretical meaningful collapse of the complement of the
zero section.

Definition A.6. Let S1 denote the simplicial circle ∆1/∂∆1, as well
as its geometric realization (which is homeomorphic to the space of
complex numbers having norm one). If X is a space with basepoint x0,
the space of loops in X based at x0 is denoted Ω(X, x0). In order to
make homotopical sense out of this in case X is a simplicial set, embed
X in a weakly equivalent Kan simplicial set X ′ and set Ω(X, x0) :=
sSet∗(S

1, (X ′, x0)). The right hand side denotes the pointed simplicial
set having as its n-simplices the pointed maps from S1 ∧∆n

+ to X ′.
If E = (E0, E1, . . .) is a spectrum [Jar04a], denote by Ω∞E the

colimit of the sequence

E0
- ΩE1

- Ω2E2
- · · · .
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A space is an infinite loop space if it is homotopy equivalent to Ω∞E
for some spectrum E.

Definition A.7. A commutative diagram

X
f- Y

Z
?

- W
?

of simplicial sets or topological spaces or motivic spaces is a homotopy
pushout square if the following holds. Factor f as a decent inclusion

(a cofibration) i : X - T followed by a weak equivalence T
∼- Y .

Then the induced map Z
∐

X T - W is also a weak equivalence. In
the case of simplicial sets or motivic spaces, any inclusion is decent.
For example, if X is pointed, the square

X - ∗

∗
?

- S1 ∧X
?

is a homotopy pushout square. A homotopy cofiber sequence is a ho-
motopy pushout square as above in which Z = ∗.

Notation A.8. Let k be a field. The derived category of effective geo-
metrical motives over k, as described in [Lev04a], is denoted DMeff

gm(k).

If one inverts tensoring with the Tate motive Z(1) in DMeff
gm(k), one

obtains the derived category of geometrical motives DM(k).

A.9. Background on the Mumford conjecture. Let Γg,b denote
the mapping class group of an oriented surface Fg,b of genus g with b
boundary components. That is, Γg,b := π0Diff(Fg,b, ∂). In [Mum83],
Mumford conjectured that the rational group cohomology of Γg,b co-
incides with the polynomial algebra Q[κ1, κ2, . . .] in degrees less than
g−1
2
. Here κi is the i-th Miller-Morita-Mumford class having degree 2i.
There is a canonical homomorphism Γg,b - Γg+1,b induced by

glueing on a torus with two boundary components, as well as a ho-
momorphism Γg,b - Γg,b−1 (for b positive) induced by glueing on a
disk. These homomorphisms give maps of classifying spaces [Jar04b]
BΓg,b - BΓg+1,b resp. BΓg,b - BΓg,b−1, which induce isomor-
phisms in integral cohomology in degrees less than g−1

2
by the stability

theorems of Harer [Har85] and Ivanov [Iva89]. Hence one can compute
the integral group cohomology of Γg,b in degrees less than g−1

2
via the
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integral cohomology of the space BΓ∞ appearing as the colimit of the
sequence

BΓg,1 - BΓg+1,1 - BΓg+2,1 - · · · .
Since Quillen’s plus-construction does not change the cohomology, one
can equally use the space BΓ+∞, which (as well as Z × BΓ+∞) Ulrike
Tillmann proved to be an infinite loop space (A.6) in [Til97]. Since
the infinite loop space structure is somewhat surprising, Tillman and
Madsen conjectured that it comes from a different infinite loop space,
which can be described as follows.

Let Gr(2, n) be the Grassmann manifold of oriented 2-planes in Rn+2.
It is the base for two canonical bundles, the tautological 2-plane bundle
and the orthogonal complement n-bundle Ln

- Gr(2, n). The Thom
spaces (A.5) of the bundles L0, L1, L2, . . . form a spectrum CP∞−1 :=
(Th(L0),Th(L1), . . . ,Th(Ln), . . .). Hence there is an infinite loop space
Ω∞CP∞−1. Relying on work of Madsen and Tillman [MT01], Madsen
and Weiss proved the following in [MW02].

Theorem A.10. There is a homotopy equivalence

Z×BΓ+∞ - Ω∞CP∞−1.

Since the rational cohomology of any path component of the target is
equal to the rational cohomology of BU , where U is the infinite unitary
group, Mumford’s conjecture follows.
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