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This and the next file are slightly revised versions of my talks at the Palo Alto workshop.
I have basically added references.



1. Equivalence relations on algebraic cycles [4]

k field, SmProj(k) category of smooth projective varieties; X ∈ SmProj(k) has Z(X),
group of algebraic cycles on X :

Zn(X) = Z[X (n)]

X (n) = {points of codimension n}.
Z(X) is

• contravariant for flat morphisms
• covariant for all morphisms (with change of codimension).

But:

• not contravariant for arbitrary morphisms
• intersection product not well-behaved.



Both problems: codimension does not behave well by pull-back. Classically solved by
moving cycles :

Proposition 1 (Chow [1]). Z,Z ′ cycles on X. Then there exists a cycle Z̃ on X×P1

such that

• Z̃(0) = Z
• Z̃(∞) meets Z ′ properly.

If two cycles meet properly, their intersection product is well-defined.



Definition 1 (Samuel [9]). Adequate pair : a pair (A,∼), A commutative ring, ∼X equiv-
alence relation on Z∗(X)⊗ A for all X :

• compatible with A-linear structure and gradation
• ∀Z,Z ′ ∈ Z∗(X)⊗ A, ∃Z1 ∼X Z: Z1 and Z ′ meet properly
• ∀Z ∈ Z∗(X) ⊗ A, ∀γ ∈ Z∗(X × Y ) ⊗ A meeting Z × Y properly, Z ∼X 0 ⇒

γ∗(Z) := pXY
Y (γ · (Z × Y )) ∼Y 0.

(A,∼) adequate pair: get groups Z∗
∼(X, A) contravariant for all morphisms, covariant (with

codim shift) for all morphisms and with intersection products.



Examples 1 (from finest to coarsest).
Rational equivalence: parametrize with P1

Algebraic equivalence: parametrize with curves
Smash-nilpotence equivalence (Voevodsky [11]): Z smash-nilpotent on X ⇐⇒ Z⊗n ∼rat 0
on Xn for n � 0
Homological equivalence: see below
Numerical equivalence: Z ∼num 0 ⇐⇒ deg(Z ·Z ′) = 0 ∀Z ′ of complementary codimension
(meeting Z properly)

Rational equivalence finest adequate equivalence relation and numerical equivalence coarsest
if A is a field.

Usual notation: Z∗
rat(X,Z) = CH∗(X) (Chow groups).



Homological equivalence involves a Weil cohomology theory :

Definition 2. A Weil cohomology theory with coefficients in a field K is a functor

H∗ : SmProj(k)op → V ec∗K (fd graded vector spaces)

with

• dim H2(P1) = 1
• Künneth formula H∗(X × Y ) ' H∗(X)⊗H∗(Y )
• Multiplicative trace map Tr : H2d(X) → K if dim X = d inducing
• Poincaré duality
• Multiplicative, contravariant and normalised cycle class maps

cl : Zn(X)⊗ A → H2n(X)

(given homomorphism A → K)

(Normalised means: degree and trace are compatible.)

Then: Z ∼H 0 ⇐⇒ cl(Z) = 0



1.1. Examples of Weil cohomologies:

(1) In all characteristics: l-adic cohomology Hl(X) = H∗
et(X̄,Ql), l 6= char k. (K = Ql.)

(2) In characteristic p, k perfect: crystalline cohomology Hcris(X). (K = Quot(W (k)).)
(3) In characteristic 0:

(a) algebraic de Rham cohomology HdR(X) = H∗(X, Ω·
X). (K = k.)

(b) Betti cohomology: given σ : k ↪→ C, Hσ(X) = H∗
Betti(σX(C),Q). (K = Q.)

These are the classical Weil cohomologies.



Given an adequate pair (A,∼), get a category of pure motives as end of string of functors:

varieties correspondences effective motives motives

SmProj(k) −−→ Cor∼(k,A)
ps-ab envelope−−−−−−−→ Moteff

∼ (k, A)
invert L−−−−→ Mot∼(k,A)

X 7→ [X ] 7→ h(X) 7→ h(X)

f 7→ [Γf ]

h(Spec k) =: 1

h(P1) = 1⊕ L



2. Algebraic correspondences [4]

X, Y smooth projective, dim Y = d:

Definition 3. Cor∼([X ], [Y ]) = Zd
∼(X × Y,A).

2.1. Composition of correspondences:

X, Y, Z 3 varieties, α ∈ Cor∼([X ], [Y ]), β ∈ Cor∼([Y ], [Z]):

X × Y × Z
pXY
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pXZ

��

pY Z
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X × Y X × Z Y × Z

α β ◦ α β

β ◦ α = (pXZ)∗(p
∗
XY α · p∗Y Zβ).

Then Cor∼(k,A) is an A-linear category and f 7→ [Γf ] (graph) is a functor.

Warning 1. Here this functor is covariant as in Fulton and Voevodsky; it is contravariant
with Grothendieck and his school.



varieties correspondences effective motives motives

SmProj(k) −−→ Cor∼(k,A)
ps-ab envelope−−−−−−−→ Moteff

∼ (k, A)
invert L−−−−→ Mot∼(k,A)

X 7→ [X ] 7→ h(X) 7→ h(X)

f 7→ [Γf ]

h(Spec k) =: 1

h(P1) = 1⊕ L



3. Effective motives

Definition 4. A additive category: A is pseudo-abelian if every idempotent endomor-
phism has a kernel (hence also an image).

An additive category A has a pseudo-abelian envelope \ : A → A\: A\ pseudo-abelian,
\ additive and universal for additive functors to pseudo-abelian categories. A A-linear ⇒
A\, \ A-linear.

3.1. Description of A\:

• Objects: pairs (M, p), M ∈ A, p = p2 ∈ End(M).
• Morphisms: Hom((M, p), (N, q)) = qHom(M, N)p.

The functor \ is fully faithful.

Definition 5. Moteff
∼ (k,A) = Cor∼(k,A)\.



varieties correspondences effective motives motives

SmProj(k) −−→ Cor∼(k,A)
ps-ab envelope−−−−−−−→ Moteff

∼ (k, A)
invert L−−−−→ Mot∼(k,A)

X 7→ [X ] 7→ h(X) 7→ h(X)

f 7→ [Γf ]

h(Spec k) =: 1

h(P1) = 1⊕ L

L is the Lefschetz motive.



4. Tensor structure

The symmetric monoidal structure (X, Y ) 7→ X ×Y on SmProj(k) extends to an A-linear
unital symmetric monoidal structure (:= tensor structure) on Cor∼(k,A) (unit: [Spec k]).

A tensor category ⇒ A\ tensor category and \ tensor functor.

A category, L : A → A endofunctor: universal construction

A → A[L−1]

such that M 7→ L(M) becomes equivalence of categories.



4.1. Description of A[L−1]:

• Objects: pairs (M, m), M ∈ A, m ∈ Z.
• Morphisms: Hom((M, m), (N, n)) = lim−→Hom(Lk+m(M), Lk+n(N)).

If A tensor category and L ∈ A, apply this to L(M) = M ⊗ L and get A[L−1].

Lemma 1 (Voevodsky). A[L−1] is tensor if and only if the cycle (123) acts on L⊗3 as
the identity.



5. Motives

Definition 6. Mot∼(k,A) = Moteff
∼ (k,A)[L−1] (L the Lefschetz motive).

T := L−1 the Tate motive.

Notation 1. M(n) = M ⊗ L⊗n.

Warning 2. Grothendieck writes M(−n) instead of M(n).

Projective bundle formula ⇒ M 7→ M(1) fully faithful on Moteff
∼ (k, A) ⇒ Moteff

∼ (k, A) →
Mot∼(k, A) fully faithful.
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ps-ab envelope−−−−−−−→ Moteff

∼ (k, A)
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6. Duals and rigidity

Definition 7 (Dold-Puppe [3]). A tensor category.
a) M ∈ A: M has a dual if ∃M ∗ ∈ A, ηM : 1 → M ∗ ⊗M , εM : M ⊗M ∗ → 1 such that
both compositions

M
1M⊗ηM−−−−→ M ⊗M ∗ ⊗M

εM⊗1M−−−−→ M

M ∗ ηM⊗1M∗−−−−→ M ∗ ⊗M ⊗M ∗ 1M∗⊗εM−−−−→ M ∗

equal the identity.
b) A is rigid if every object has a dual.

Proposition 2 (not difficult). Mot∼(k,A) is rigid.

Dual of h(X): h(X)(− dim X); η, ε both given by ∆X ∈ Zdim X
∼ (X ×X).



7. Traces

A tensor category, M ∈ A has a dual: ∀N ∈ A, isomorphism

ιM,N : Hom(1, M ∗ ⊗N) → Hom(M, N)

ιM,N(f ) = (εM ⊗ 1N) ◦ (1M ⊗ f )

ι−1
M,N(g) = (1M∗ ⊗ g) ◦ ηM

Definition 8. a) f ∈ End(M):

tr(f ) ∈ End(1)

defined by composition

1
ι−1
M,M (f)
−−−−→ M ∗ ⊗M

switch−−−→ M ⊗M ∗ → 1.

b) dim M := tr(1M).

H : A → B tensor functor: tr(H(f )) = H(tr(f )) (obvious) ⇒ if EndA(1) ↪→ EndB(1),
may compute tr(f ) via H .



7.1. Application: the trace formula.

H Weil cohomology with coefficients K, A ↪→ K: take A = Motrat(k, A), B = V ec∗K,
H = H . For X smooth projective and f ∈ Cor∼([X ], [X ]) = Mot∼(h(X), h(X)),

tr(f ) = tr(H(f )).

This is the trace formula:

• Left hand side = f ·∆X

• Right hand side =
∑2d

i=0(−1)iTr(f | H i(X)).

Corollary 1.
∑2d

i=0(−1)iTr(f | H i(X)) independent of H. In particular,
dimrigid hH(X) = χH(X) independent of H.

Corollary 2. f ∈ Motnum(h(X), h(X)): may compute tr(f ) by lifting f to H-
equivalence (for some H) and computing the trace via H. E.g. dimrigid hnum(X) =
dimrigid hH(X) = χH(X).

How about the Betti numbers of X themselves?



7.1.1. In characteristic 0: Comparison theorems

• Betti-de Rham: H i
σ(X)⊗Q C ' H i

dR(X)⊗k C (period isomorphisms, Grothendieck
[5])

• Betti-l-adic: H i
σ(X)⊗Q Ql ' H i

l (X) (Grothendieck-Artin [12])

7.1.2. In characteristic p: Weil conjectures

• Deligne [2]: ∀i det(1− tF | H i
l (X)) independent of l

• Katz-Messing [7]: also true for H i
cris(X).

In particular, the ranks are all equal. . .

Much deeper than for Euler-Poincaré characteristic!

7.1.3. Cheaper approach: Chow-Künneth decomposition

• Šermenev [10]: X abelian variety of dimension d ⇒ hrat(X) '
⊕2d

i=0 hi(X) with
H(hi(X)) = H i(X) for any Weil cohomology.

• Murre [8]: true for any X if d ≤ 2.

In both cases, Betti numbers only depend on X for any Weil cohomology, not only classical
ones. Same for trace of an endomorphism. (Independence of l in characteristic p!)

Conjecturally true for any X .



8. Jannsen’s theorem

Theorem 1 (Jannsen [6]). For any k, Motnum(k,Q) is abelian semi-simple. Moreover
num is the only adequate equivalence relation with this property.

Proof not really difficult but uses existence of a Weil cohomology.
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