PURE MOTIVES

BRUNO KAHN

This and the next file are slightly revised versions of my talks at the Palo Alto workshop.
[ have basically added references.



1. EQUIVALENCE RELATIONS ON ALGEBRAIC CYCLES [4]

k field, SmProj(k) category of smooth projective varieties; X € SmProj(k) has Z(X),
group of algebraic cycles on X:

Z"(X) =Z[X")]
X™ = points of codimension n}.
Z(X)is

e contravariant for flat morphisms
e covariant for all morphisms (with change of codimension).

But:

e not contravariant for arbitrary morphisms
e intersection product not well-behaved.



Both problems: codimension does not behave well by pull-back. Classically solved by
mowving cycles:

Proposition 1 (Chow [1]). Z, Z' cycles on X. Then there exists a cycle Z on X x P!

such t~hat
° g(O) = 7

o Z(0c0) meets Z' properly.

[f two cycles meet properly, their intersection product is well-defined.



Definition 1 (Samuel [9]). Adequate pair: a pair (A, ~), A commutative ring, ~x equiv-
alence relation on Z*(X) ® A for all X:
e compatible with A-linear structure and gradation
oV 7 € ZX(X)® A, 37, ~x Z: Z; and Z' meet properly
oV € ZX(X)R A Vy € Z5(X X Y)® A meeting Z x Y properly, Z ~x 0 =
(Z) =py" (v (Z xY)) ~y 0.

(A, ~) adequate pair: get groups Z* (X, A) contravariant for all morphisms, covariant (with
codim shift) for all morphisms and with intersection products.



Rational equivalence: parametrize with P?

Algebraic equivalence: parametrize with curves

Smash-nilpotence equivalence (Voevodsky [!1]): Z smash-nilpotent on X <= Z%" ~,; 0
on X" forn >0

Homological equivalence: see below

Numerical equivalence: Z ~p, 0 <= deg(Z-Z') = 0VZ' of complementary codimension
(meeting Z properly)

Rational equivalence finest adequate equivalence relation and numerical equivalence coarsest
if Ais a field.

Usual notation: Z*

rat

(X,Z) = CH*(X) (Chow groups).



Homological equivalence involves a Weil cohomology theory:

Definition 2. A Weil cohomology theory with coefficients in a field K is a functor
H* : SmProj(k)” — Vecj (fd graded vector spaces)

with
o dim H*(P') =1
e Kiinneth formula H*(X x Y) ~ H*(X) ® H*(Y)
e Multiplicative trace map Tr : H*(X) — K if dim X = d inducing
e Poincaré duality
e Multiplicative, contravariant and normalised cycle class maps

i ZMX)® A — H™(X)
(given homomorphism A — K)

(Normalised means: degree and trace are compatible.)

Then: Z ~p 0 < cl(Z) =0



1.1. Examples of Weil cohomologies:

(1) In all characteristics: I-adic cohomology H;(X) = H(X,Qy), [ # chark. (K = Q;.)
(2) In characteristic p, k perfect: crystalline cohomology H..is(X). (K = Quot(W (k)).)
(3) In characteristic 0:

(a) algebraic de Rham cohomology Hyr(X) = H*(X,Qy). (K =k.)

(b) Betti cohomology: given o : k — C, H,(X) = H},,,;,(cX(C),Q). (K =Q.)

These are the classical Weil cohomologies.



Given an adequate pair (A, ~), get a category of pure motives as end of string of functors:

varieties correspondences effective motives motives
SmProj(k) —  Cor.(k, A) ~ ZZ2o0oPe hpogeffp 4y VUL ot (K, A)
X — [ X] — h(X) — h(X)
f — [I']
h(Speck) =: 1

h(PY)=16L



2. ALGEBRAIC CORRESPONDENCES |4]
X, Y smooth projective, dimY = d:
Definition 3. Cor.([X],[Y]) = Z4X x Y, A).
2.1. Composition of correspondences:

X,Y, Z 3 varieties, a € Cor([X],[Y]), B € Cor([Y], |Z]):

X XY x 7
PXY lp)@%
X XY X X Z Y x 7
Qo 6o« I}

Boa= (pxz)(Pxya - pyz0)-
Then Cor.(k, A) is an A-linear category and f — [['f] (graph) is a functor.

Here this functor is covariant as in Fulton and Voevodsky; it is contravariant
with Grothendieck and his school.



varieties correspondences effective motives motives
SmProj(k) —  Cor(k, A) Mot (k, A) nvert B, Mot (k, A)
X — [ X] — h(X) — h(X)
f — [I'y]

ps-ab envelope

h(Speck) =: 1
MPY =1L



3. BEFFECTIVE MOTIVES

Definition 4. A additive category: A is pseudo-abelian if every idempotent endomor-
phism has a kernel (hence also an image).

An additive category A has a pseudo-abelian envelope i : A — A% A" pseudo-abelian,

1 additive and universal for additive functors to pseudo-abelian categories. A A-linear =
A" b A-linear.

3.1. Description of A’

e Objects: pairs (M,p), M € A, p=p* € End(M).
e Morphisms: Hom((M,p), (N, q)) = gHom(M, N)p.

The functor g is fully faithful.
Definition 5. Mot (k, A) = Cor.(k, A)".



varieties correspondences effective motives motives

SmProj(k) —  Cor(k, A) Mot (k, A) nvert B, Mot (k, A)

ps-ab envelope

X — [ X] — h(X) — h(X)
f — ']

h(Speck) =: 1

hPY =1L

L is the Lefschetz motive.



4. TENSOR STRUCTURE

The symmetric monoidal structure (X,Y) — X XY on SmProj(k) extends to an A-linear
unital symmetric monoidal structure (:= tensor structure) on Cor.(k, A) (unit: [Speck]).

A tensor category = A" tensor category and 1 tensor functor.

A category, L : A — A endofunctor: universal construction
A — ALY

such that M — L(M) becomes equivalence of categories.



4.1. Description of A[L|:

e Objects: pairs (M, m), M € A, m € Z.
 Morphisms: Hom((M,m), (N,n)) = lim Hom(L*™ (M), L*"(N)).
If A tensor category and L € A, apply this to L(M) = M ® L and get A[L™].

Lemma 1 (Voevodsky). A[L™Y] is tensor if and only if the cycle (123) acts on L®® as
the identity.



5. MOTIVES
Definition 6. Mot (k, A) = Mot (k, A)[L~'] (L the Lefschetz motive).

T := L' the Tate motive.
Notation 1. M(n) = M ® L®".
Grothendieck writes M (—n) instead of M (n).

Projective bundle formula = M ~— M (1) fully faithful on Mot (k, A) = Mot™(k, A) —
Mot (k, A) fully faithful.



varieties correspondences effective motives motives
SmProj(k) —  Cor(k, A) Mot (k, A) nvert B, Mot (k, A)
X — [ X] — h(X) — h(X)
f — [I'y]

ps-ab envelope

h(Speck) =: 1
MPY =1L



6. DUALS AND RIGIDITY

Definition 7 (Dold-Puppe [3]). A tensor category.
a) M € A: M hasadual if AM* € Ay : 1 - M* @ M, ep : M ® M* — 1 such that
both compositions

M EM pre M M SMEM ar
M* ML prx M M M* LIy ®em M

equal the identity.
b) A is rigid if every object has a dual.

Proposition 2 (not difficult). Mot (k, A) is rigid.
Dual of h(X): h(X)(—dim X); n,e both given by Ax € ZMX(X x X).



7. 'TRACES
A tensor category, M € A has a dual: VN € A, isomorphism
ey Hom(1, M*® N) — Hom(M, N)
tun(f) = (em ® 1y) o (1y ® f)
tarn(9) = (La ® 9) © Ny
Definition 8. a) f € End(M):
tr(f) € End(1)
defined by composition

1
wm(f) switch

1 20 MM 2 M e M — 1.
b) dim M := tr(1y).

H : A — B tensor functor: tr(H(f)) = H(tr(f)) (obvious) = if End4(1) — Endg(1),
may compute tr(f) via H.



7.1. Application: the trace formula.

H Weil cohomology with coefficients K, A — K: take A = Mot (k, A), B = Vecy,
H = H. For X smooth projective and f € Cor (| X], [X]) = Mot (h(X), h(X)),

tr(f)=tr(H(f)).
This is the trace formula:

e Left hand side = f - Ay
e Right hand side = S22 (=1)'Tr(f | H(X)).

Corollary 1. Z2d( D'Tr(f | HY(X)) independent of H.  In particular,
dim,igiqg b (X) = xu(X) independent of H.

Corollary 2. f € Motym(h(X),h(X)): may compute tr(f) by lifting f to H-
equivalence (for some H) and computing the trace via H. FE.g. dim,;yqhpum(X) =

How about the Betti numbers of X themselves?



7.1.1. In characteristic 0: Comparison theorems

e Betti-de Rham: H!(X) ®q C ~ Hix(X) ®; C (period isomorphisms, Grothendieck

)
e Betti-l-adic: H.(X) ®q Q; ~ H;(X) (Grothendieck-Artin [17])

7.1.2.  In characteristic p: Weil conjectures
e Deligne [2]: Vi det(1 — tF' | H}(X)) independent of [
e Katz-Messing [/]: also true for H' . (X).

cris

In particular, the ranks are all equal. ..

Much deeper than for Euler-Poincaré characteristic!

7.1.3. Cheaper approach: Chow-Kiinneth decomposition

e Sermenev [10]: X abelian varicty of dimension d = Ay (X) =~ @7, h'(X) with
H(h (X)) = H'(X) for any Weil cohomology.
e Murre [3]: true for any X if d < 2.

In both cases, Betti numbers only depend on X for any Weil cohomology, not only classical
ones. Same for trace of an endomorphism. (Independence of [ in characteristic p!)

Conjecturally true for any X.



8. JANNSEN’S THEOREM

Theorem 1 (Jannsen [0]). For any k, Moty (k, Q) is abelian semi-simple. Moreover
num S the only adequate equivalence relation with this property.

Proof not really difficult but uses existence of a Weil cohomology:.
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