PURE MOTIVES

BRUNO KAHN

This and the next file are slightly revised versions of my talks at the Palo Alto workshop.

I have basically added references.

EQUIVALENCE RELATIONS ON ALGEBRAIC CYCLES 4

$$p_i(k)$$
 category of smooth projective varieties: $X \in \text{SmProj}(k)$

$$\operatorname{roj}(k)$$
 category of smooth projective varieties; $X \in \operatorname{SmProj}(k)$

$$\operatorname{roj}(k)$$
 category of smooth projective varieties; $X \in \operatorname{SmProj}(k)$

$$\operatorname{coj}(k)$$
 category of smooth projective varieties; $X \in \operatorname{SmProj}(k)$

 $\mathcal{Z}^n(X) = \mathbf{Z}[X^{(n)}]$

 $X^{(n)} = \{ \text{points of codimension } n \}.$

 $\mathcal{Z}(X)$ is

But:

• contravariant for flat morphisms

• not contravariant for arbitrary morphisms

• intersection product not well-behaved.

• covariant for all morphisms (with change of codimension).

k field, SmProj(k) category of smooth projective varieties; $X \in SmProj(k)$ has $\mathcal{Z}(X)$, group of algebraic cycles on X:

such that

• $\tilde{Z}(\infty)$ meets Z' properly.

Both problems: codimension does not behave well by pull-back. Classically solved by

If two cycles meet properly, their intersection product is well-defined.

$$such that$$

$$\bullet \tilde{Z}(0) = Z$$

moving cycles:

- **Proposition 1** (Chow [1]). Z, Z' cycles on X. Then there exists a cycle \tilde{Z} on $X \times \mathbf{P}^1$

Definition 1 (Samuel [9]). Adequate pair: a pair (A, \sim) , A commutative ring, \sim_X equivalence relation on $\mathcal{Z}^*(X) \otimes A$ for all X:

• compatible with A-linear structure and gradation

 $\bullet \ \forall Z, Z' \in \mathcal{Z}^*(X) \otimes A, \ \exists Z_1 \sim_X Z: \ Z_1 \ \text{and} \ Z' \ \text{meet properly}$

 $\gamma_*(Z) := p_{\mathsf{V}}^{XY}(\gamma \cdot (Z \times Y)) \sim_{\mathsf{V}} 0.$

 $\bullet \ \forall Z \in \mathcal{Z}^*(X) \otimes A, \ \forall \gamma \in \mathcal{Z}^*(X \times Y) \otimes A \text{ meeting } Z \times Y \text{ properly, } Z \sim_X 0 \Rightarrow$

 (A, \sim) adequate pair: get groups $\mathcal{Z}^*_{\sim}(X, A)$ contravariant for all morphisms, covariant (with

codim shift) for all morphisms and with intersection products.

Examples 1 (from finest to coarsest).

Rational equivalence: parametrize with ${f P}^1$

Algebraic equivalence: parametrize with curves

Smash-nilpotence equivalence (Voevodsky [11]): Z smash-nilpotent on $X\iff Z^{\otimes n}\sim_{\mathrm{rat}} 0$

on X^n for $n \gg 0$ Homological equivalence: see below Numerical equivalence: $Z \sim_{\text{num}} 0 \iff \deg(Z \cdot Z') = 0 \ \forall Z'$ of complementary codimension

(meeting Z properly) Rational equivalence finest adequate equivalence relation and numerical equivalence coarsest

if A is a field. Usual notation: $\mathcal{Z}_{\text{rat}}^*(X, \mathbf{Z}) = CH^*(X)$ (Chow groups).

Homological equivalence involves a Weil cohomology theory:

Definition 2. A Weil cohomology theory with coefficients in a field K is a functor

$$H^*: \operatorname{SmProj}(k)^{op} \to Vec_K^*$$
 (fd graded vector spaces)

with

- $\bullet \dim H^2(\mathbf{P}^1) = 1$
- Künneth formula $H^*(X \times Y) \simeq H^*(X) \otimes H^*(Y)$
- Multiplicative trace map $Tr: H^{2d}(X) \to K$ if dim X=d inducing
- Poincaré duality
- Multiplicative, contravariant and normalised cycle class maps

$$cl: \mathcal{Z}^n(X) \otimes A o H^{2n}(X)$$

(given homomorphism $A \to K$)

(Normalised means: degree and trace are compatible.)

Then: $Z \sim_H 0 \iff cl(Z) = 0$

1.1. Examples of Weil cohomologies:

(a) algebraic de Rham cohomology $H_{dR}(X) = \mathbb{H}^*(X, \Omega_X)$. (K = k)

(2) In characteristic p, k perfect: crystalline cohomology $H_{cris}(X)$. (K = Quot(W(k)).)

(b) Betti cohomology: given $\sigma: k \hookrightarrow \mathbf{C}, H_{\sigma}(X) = H_{Retti}^*(\sigma X(\mathbf{C}), \mathbf{Q}). (K = \mathbf{Q}.)$

(1) In all characteristics: l-adic cohomology $H_l(X) = H_{et}^*(\bar{X}, \mathbf{Q}_l), l \neq \operatorname{char} k.$ $(K = \mathbf{Q}_l)$

These are the *classical* Weil cohomologies.

(3) In characteristic 0:

Given an adequate pair (A, \sim) , get a category of *pure motives* as end of string of functors:

	•		9 0 1		G	
varieties		correspondences		effective motives	motive	es
			ps-ab envelope	- .	invert L	

 $X \qquad \mapsto \qquad [X] \qquad \qquad \mapsto \qquad h(X) \qquad \qquad \mapsto \qquad h(X)$

 $h(\operatorname{Spec} k) =: \mathbf{1}$

 $h(\mathbf{P}^1) = \mathbf{1} \oplus L$

 $f \longmapsto [\Gamma_f]$

varieties correspondences effective motives motives
$$\operatorname{SmProj}(k) \longrightarrow \operatorname{Cor}_{\sim}(k,A) \xrightarrow{\operatorname{ps-ab\ envelope}} \operatorname{Mot}^{\operatorname{eff}}_{\sim}(k,A) \xrightarrow{\operatorname{invert}\ L} \operatorname{Mot}_{\sim}(k,A)$$

2. Algebraic correspondences [4]

X, Y smooth projective, dim Y = d:

Definition 3. $\operatorname{Cor}_{\sim}([X],[Y]) = \mathcal{Z}_{\sim}^d(X \times Y,A).$

2.1. Composition of correspondences:

X, Y, Z 3 varieties, $\alpha \in \operatorname{Cor}_{\sim}([X], [Y]), \beta \in \operatorname{Cor}_{\sim}([Y], [Z])$:

$$X \times Y \times Z$$

$$\downarrow^{p_{XZ}} \qquad \downarrow^{p_{YZ}}$$

$$X \times Y \qquad X \times Z \qquad Y \times Z$$

$$\alpha \qquad \beta \circ \alpha \qquad \beta$$

$$\beta \circ \alpha = (p_{XZ})_* (p_{XY}^* \alpha \cdot p_{YZ}^* \beta).$$

Then $\operatorname{Cor}_{\sim}(k,A)$ is an A-linear category and $f \mapsto [\Gamma_f]$ (graph) is a functor.

Warning 1. Here this functor is covariant as in Fulton and Voevodsky; it is contravariant with Grothendieck and his school.

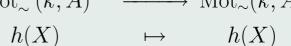
$$) \longrightarrow \operatorname{Cor}_{\sim}(k, A)$$

 $\operatorname{Mot}^{\operatorname{eff}}_{\sim}(k,A) \xrightarrow{\operatorname{invert} L} \operatorname{Mot}_{\sim}(k,A)$

effective motives

 $h(\operatorname{Spec} k) =: \mathbf{1}$

 $h(\mathbf{P}^1) = \mathbf{1} \oplus L$



motives

3. Effective motives

Definition 4. \mathcal{A} additive category: \mathcal{A} is pseudo-abelian if every idempotent endomor-

phism has a kernel (hence also an image). An additive category \mathcal{A} has a $pseudo-abelian\ envelope\ \mathbb{1}: \mathcal{A} \to \mathcal{A}^{\mathbb{1}}: \mathcal{A}^{\mathbb{1}}$ pseudo-abelian, \mathbb{A} additive and universal for additive functors to pseudo-abelian categories. \mathcal{A} A-linear \Rightarrow

- \mathcal{A}^{\natural} , \natural A-linear.

 3.1. Description of \mathcal{A}^{\natural} :
 - Objects: pairs $(M, p), M \in \mathcal{A}, p = p^2 \in End(M)$.
 - Morphisms: Hom((M, p), (N, q)) = qHom(M, N)p.

The functor abla is fully faithful.

Definition 5. $\operatorname{Mot}^{\operatorname{eff}}_{\sim}(k,A) = \operatorname{Cor}_{\sim}(k,A)^{\natural}$.

 $h(\operatorname{Spec} k) =: \mathbf{1}$

 $h(\mathbf{P}^1) = \mathbf{1} \oplus L$

L is the Lefschetz motive.

Tensor structure

The symmetric monoidal structure $(X,Y) \mapsto X \times Y$ on SmProj(k) extends to an A-linear unital symmetric monoidal structure (:= tensor structure) on $Cor_{\sim}(k, A)$ (unit: [Spec k]).

 $\mathcal{A} \to \mathcal{A}[L^{-1}]$

 \mathcal{A} tensor category $\Rightarrow \mathcal{A}^{\dagger}$ tensor category and \natural tensor functor.

 \mathcal{A} category, $L: \mathcal{A} \to \mathcal{A}$ endofunctor: universal construction

egory,
$$L: \mathcal{A} \to \mathcal{A}$$
 endofunctor: universal construction

such that $M \mapsto L(M)$ becomes equivalence of categories.

4.1. Description of $A[L^{-1}]$:

• Morphisms: $Hom((M, m), (N, n)) = \underline{\lim} Hom(L^{k+m}(M), L^{k+n}(N)).$

• Objects: pairs $(M, m), M \in \mathcal{A}, m \in \mathbf{Z}$.

If \mathcal{A} tensor category and $L \in \mathcal{A}$, apply this to $L(M) = M \otimes L$ and get $\mathcal{A}[L^{-1}]$.

Lemma 1 (Voevodsky). $A[L^{-1}]$ is tensor if and only if the cycle (123) acts on $L^{\otimes 3}$ as

the identity.

 $T := L^{-1}$ the Tate motive.

Notation 1. $M(n) = M \otimes L^{\otimes n}$.

Projective bundle formula $\Rightarrow M \mapsto M(1)$ fully faithful on $\operatorname{Mot}^{\text{eff}}_{\sim}(k,A) \Rightarrow \operatorname{Mot}^{\text{eff}}_{\sim}(k,A) \rightarrow$

 $Mot_{\sim}(k, A)$ fully faithful.

Warning 2. Grothendieck writes M(-n) instead of M(n).

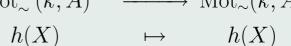
$$) \longrightarrow \operatorname{Cor}_{\sim}(k, A)$$

 $\operatorname{Mot}^{\operatorname{eff}}_{\sim}(k,A) \xrightarrow{\operatorname{invert} L} \operatorname{Mot}_{\sim}(k,A)$

effective motives

 $h(\operatorname{Spec} k) =: \mathbf{1}$

 $h(\mathbf{P}^1) = \mathbf{1} \oplus L$



motives

Definition 7 (Dold-Puppe [3]). \mathcal{A} tensor category.

Proposition 2 (not difficult). $Mot_{\sim}(k, A)$ is rigid.

b) \mathcal{A} is rigid if every object has a dual.

equal the identity.

$$M \in \mathcal{A}$$
: M has a dual if $\exists M^* \in \mathcal{A}$, $\eta_M : \mathbf{1} \to M$

a) $M \in \mathcal{A}$: M has a dual if $\exists M^* \in \mathcal{A}, \, \eta_M : \mathbf{1} \to M^* \otimes M, \, \varepsilon_M : M \otimes M^* \to \mathbf{1}$ such that both compositions

Dual of h(X): $h(X)(-\dim X)$; η, ε both given by $\Delta_X \in \mathcal{Z}_{\sim}^{\dim X}(X \times X)$.

DUALS AND RIGIDITY

 $M \xrightarrow{1_M \otimes \eta_M} M \otimes M^* \otimes M \xrightarrow{\varepsilon_M \otimes 1_M} M$

 $M^* \xrightarrow{\eta_M \otimes 1_{M^*}} M^* \otimes M \otimes M^* \xrightarrow{1_{M^*} \otimes \varepsilon_M} M^*$

TRACES

 \mathcal{A} tensor category, $M \in \mathcal{A}$ has a dual: $\forall N \in \mathcal{A}$, isomorphism

$$\iota_{M,N}: Hom(\mathbf{1},M^*\otimes N) o Hom(M,N)$$

$$\iota_{M,N}(f) = (\varepsilon_M \otimes 1_N) \circ (1_M \otimes f)$$
 $\iota_{M,N}^{-1}(g) = (1_{M^*} \otimes g) \circ \eta_M$

$$tr(f) \in End(\mathbf{1})$$

defined by composition

may compute tr(f) via H.

 $1 \xrightarrow{\iota_{M,M}^{-1}(f)} M^* \otimes M \xrightarrow{\text{switch}} M \otimes M^* \to 1.$ b) dim $M := tr(1_M)$. $H: \mathcal{A} \to \mathcal{B}$ tensor functor: tr(H(f)) = H(tr(f)) (obvious) \Rightarrow if $End_{\mathcal{A}}(\mathbf{1}) \hookrightarrow End_{\mathcal{B}}(\mathbf{1})$,

Definition 8. a) $f \in End(M)$:

7.1. Application: the trace formula.

H Weil cohomology with coefficients $K, A \hookrightarrow K$: take $\mathcal{A} = \mathrm{Mot}_{\mathrm{rat}}(k, A), \mathcal{B} = Vec_K^*$

• Right hand side = $\sum_{i=0}^{2d} (-1)^i Tr(f \mid H^i(X))$.

 $\dim_{rigid} h_H(X) = \chi_H(X)$ independent of H.

How about the Betti numbers of X themselves?

This is the trace formula:

 $\dim_{rigid} h_H(X) = \chi_H(X).$

• Left hand side = $f \cdot \Delta_X$

cients
$$K$$
. $A \subseteq$

eients
$$K$$
 $A \subseteq$

ents
$$K$$
. A

H = H. For X smooth projective and $f \in \operatorname{Cor}_{\sim}([X], [X]) = \operatorname{Mot}_{\sim}(h(X), h(X))$,

tr(f) = tr(H(f)).

Corollary 1. $\sum_{i=0}^{2d} (-1)^i Tr(f \mid H^i(X))$ independent of H. In particular,

Corollary 2. $f \in \operatorname{Mot}_{num}(h(X), h(X))$: may compute tr(f) by lifting f to Hequivalence (for some H) and computing the trace via H. E.g. $\dim_{rigid} h_{num}(X) =$

ents
$$K$$

- 7.1.1. In characteristic 0: Comparison theorems
 - Betti-de Rham: $H^i_{\sigma}(X) \otimes_{\mathbf{Q}} \mathbf{C} \simeq H^i_{dR}(X) \otimes_k \mathbf{C}$ (period isomorphisms, Grothendieck

In both cases, Betti numbers only depend on X for any Weil cohomology, not only classical

- Betti-l-adic: $H^i_{\sigma}(X) \otimes_{\mathbf{Q}} \mathbf{Q}_l \simeq H^i_l(X)$ (Grothendieck-Artin [12]) 7.1.2. In characteristic p: Weil conjectures
- Deligne [2]: $\forall i \det(1-tF \mid H_i(X))$ independent of l
- Katz-Messing [7]: also true for $H^i_{cris}(X)$.
- In particular, the ranks are all equal...
- Much deeper than for Euler-Poincaré characteristic!
- 7.1.3. Cheaper approach: Chow-Künneth decomposition
 - Sermenev [10]: X abelian variety of dimension $d \Rightarrow h_{\rm rat}(X) \simeq \bigoplus_{i=0}^{2d} h^i(X)$ with
 - $H(h^i(X)) = H^i(X)$ for any Weil cohomology.
 - Murre [8]: true for any X if $d \leq 2$.
- ones. Same for trace of an endomorphism. (Independence of l in characteristic p!)

Conjecturally true for any X.

num is the only adequate equivalence relation with this property.

Proof not really difficult but uses existence of a Weil cohomology.

- [1] W. L. Chow On the equivalence classes of cycles in an algebraic variety, Ann. of Math. 64 (1956), 450–479.
- [2] P. Deligne La conjecture de Weil, I, Publ. Math. IHÉS 43 (1974), 5-77. [3] A. Dold, D. Puppe Duality, trace and transfer Proceedings of the International Conference on Geometric Topology
- (Warsaw, 1978), PWN, Warsaw, 1980, 81–102.
- [4] W. Fulton Intersection theory, Springer, 1984. [5] A. Grothendieck On the de Rham cohomology of algebraic varieties, Publ. Math. IHÉS 29 (1966), 93–103.
- [6] U. Jannsen Motives, numerical equivalence, and semi-simplicity, Invent. Math. 107 (1992), 447–452.
- [7] N. Katz, W. Messing Some consequences of the Riemann hypothesis for varieties over finite fields, Invent. Math. 23
- (1974), 73-77.[8] J. P. Murre On the motive of an algebraic surface, J. reine angew. Math. (Crelle) 409 (1990), 190–204.
- [9] C. Samuel Relations d'équivalence en géométrie algébrique, Proc. ICM 1958, Cambridge Univ. Press, 1960, 470–487.
- [10] A. Šermenev The motive of an abelian variety, Funct. Anal. 8 (1974), 47–53.
- [11] V. Voevodsky A nilpotence theorem for cycles algebraically equivalent to 0, Int. Math. Res. Notices 4 (1995), 1–12.
- [12] Séminaire de géométrie algébrique du Bois-Marie: Cohomologie étale (SGA4), Vol. III, Lect. Notes in Math. 305,
 - Springer, 1973.