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Chapter A: Participant Contributions

A.1 Aoyagi, Miki

We consider a real log canonical threshold of singularities in learning theory. Such a
threshold corresponds to a learning coefficient of generalization error in Bayesian estimation,
which serves to measure the learning efficiencies in hierarchical learning models. We overview
the learning coefficients obtained by us and also give a new results for Vandermonde matrix
type singularity.

A.2 Boneh, Arnon

I have strong interst in black box and pink box input-output models which can be
represented by the Volterra convolution series. Of special interest to me are the slightly
nonlinear models of conservative systems where the distinction should be made between
time varying and stationary models in the presence of large amounts of measured noisy
data. This leads to large size non convex quadratically constrained quadratic programming
problems with a high rate of built in redundancy. The model selection problem in such
problems and the learning of model properties online is what connects me to the workshop
in which I would like to participate.

A.3 Drton, Mathias

Watanabe’s work provides a general understanding of the asymptotic growth behavior
of marginal likelihood integrals in Bayesian approaches to model selection. I hope that
during the workshop we can discuss how knowledge about the learning coefficients = (real)
log-canonical thresholds in Watanabe’s theory could be exploited in model selection. To my
knowledge, no practical proposal for a statistical method currently exists. I will try to briefly
explain the issues involved.

Suppose we are given independent and identically distributed observations X1, . . . , Xn

and competing modelsM1, . . . ,Mp for the distribution of these observations. Suppose that
modelMi has likelihood function Li(θ |X1, . . . , Xn) and that, in a Bayesian approach, the
parameter θ in this model has prior distribution qi(θ). If pi denotes the prior probability,
then the posterior probability of modelMi is proportional to

pi ×

∫
Li(θ |X1, . . . , Xn)qi(θ) dθ.

The integral just written is known as the marginal likelihood of modelMi.

In his book, Watanabe derives the asymptotic growth behavior of marginal likelihood
integrals under mild regularity conditions on the modelMi and technical compactness as-
sumptions on the support of the prior qi. In the asymptotic study, it is assumed that the
observations X1, X2, . . . , Xn are identically distributed according to a distribution in Mi.
Write θ0 for the parameter indexing this true distribution. The marginal likelihood integral

Mi(n) :=

∫
Li(θ |X1, . . . , Xn)qi(θ) dθ

is then a random variable and Watanabe’s study treats the asymptotic behavior of the
sequence (Mi(n))

∞
n=1. He proves results that state that, as n→∞,

logMi(n) = logLi(θ̂n |X1, . . . , Xn)− λ(θ0) log n+ [m(θ0)− 1] log log n+Rn,
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where θ̂n is the maximum likelihood estimator, the constant λ(θ0) is the so-called learning
coefficient, m(θ0) is its order, and Rn is a sequence of random variables that converges in
distribution to a stochastic remainder term.

In the classical case of smooth models, the learning coefficient λ(θ0) does not depend
on the true parameter θ0 and equals 1/2 times the dimension of the model. Moreover,
the multiplicity m(θ0) is always equal to one. Therefore, neglecting the (probabilistically)
bounded remainder term we may select a model by maximizing the score

pi ×

(
logLi(θ̂n |X1, . . . , Xn)−

dim(Mi)

2
log n

)
.

Often the prior probabilities pi are uniform in which we simply maximize the so-called
Bayesian information criterion (BIC)

logLi(θ̂n |X1, . . . , Xn)−
dim(Mi)

2
log n. (1)

(In the smooth case, it is also known that the Hessian of the log-likelihood function at the
maximum likelihood estimator can be used to estimate the remainder term Rn, which leads
to an actual approximation to the marginal likelihood.)

However, Watanabe’s result also covers singular models. In singular models the learning
coefficient λ(θ0) and its order m(θ0) typically depend on the unknown parameter θ0. Hence,
it is not clear how learning coefficients can be used to define a model score to optimize.
It is tempting to use the learning coefficient at the maximum likelihood estimator, that is,
λ(θ̂n), but in some singular models the maximum likelihood estimator is a smooth point with
probability one, which means that we are back at considering the classical BIC as defined in
(1).

One model that is perfectly suited for experimentation is the reduced rank regression
model treated in the paper of Aoyagi and Watanabe (2005):

http://dx.doi.org.proxy.uchicago.edu/10.1016/j.neunet.2005.03.014

This paper fully solves the problem of determining all learning coefficients together with
their orders. It is an instance where maximum likelihood estimators are smooth points with
probability one. I would like to ask the participants for their thoughts on how to use the
mathematics from Aoyagi and Watanabe (2005) to create an improved information criterion
for model selection in reduced rank regression.

A.4 Garcia-Puente, Luis

For the last several years I have been intersested in modifications of the Bayesian Infor-
mation Criterion and the Akaike Information Criterion for model selection among singular
exponential models to take into account for the singularities in this family of models. Watan-
abe’s book gives the general setup to address this problem but it requires some deep algebraic
steps, namely resolution of singularities, that at the moment are not entirely feasible to per-
form in a computer. My main interest is to find ways of using the structure of these models
to ease the resolution of singularities. It would also be interesting to start collaborations
with experimental statisticians to study the power and relevance of these methods in real
data sets.
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A.5 Karwa, Vishesh

1) Learning causal Bayesian Networks:

One of the central issues in causal inference framework is learning a causal model
from observational data. Causal models are generally represented in the form of a family
of Bayesian Networks called Partial ancestral graphs (PAGs). PAGs are equivalence classes
of Bayesian Networks with hidden variables. A very specific question is to see how can we
perform learning and model selection of causal Bayesian Networks using Singular learning
theory.

2) Ecological Inference

Ecological inference refers to performing statistical inference about individuals in pres-
ence of aggregated data. By nature, ecological models are non-identifiable and contain
missing data. There is no well accepted solution to this problem, and most of the current
solutions are applicable only to contingency tables with smaller dimension. Again, model
selection is a central issue in ecological inference where tools from Singular Learning theory
may help.

A.6 Kiraly, Franz

My current work as a revolves around the application of algebraic methods in Machine
Learning and Data Analysis, where model selection is central problem. Thus my main
questions are related to algorithmical and theoretical application of Singular Learning Theory
to these fields.

Regularization. Watanabe’s standard form of the log likelihood ratio is a powerful tool for
fitting a parametric model to data. Intrinsic knowledge of the model space’s structure and
its embedded singularities is used in order to obtain this standard form. Also, the Watanabe
Information Criterion (WAIC) is the canonical tool for model selection in a singular setting,
which similarly applies knowledge on the model classes’ structure.

A large amount of classical learning machines resp. Machine Learning algorithms uses
regularization successfully in order to work around the non-convergence of the maximum
likelihood estimate. It would be an interesting question to pursue whether and how the
classical regularization methods relate to the methods in Singular Learning Theory, and
whether new regularization strategies for loss functions and for model selection in a class of
models can be derived, e.g. for hierarchical resp. structural models.

Approximation. In its heart, Singular Learning Theory relies on the assumption that the
true distribution is contained in a parametric family of distributions. However, in practice,
the best one can hope for is often only that the true distribution can be approximated
arbitrarily closely with growing model complexity - this has been noted already on several
occasions in the classical Singular Learning Theory papers. However, a more detailed analysis
of the convergence behaviors of parametric model classes in terms of model complexity would
probably be of interest, e.g. as it is classically done for Neural Networks in Machine Learning.

Simplicity. One of the central questions in model selection is how to find the “simplest”
model. If the families of models are fixed, this is canonically done by WAIC (e.g. selecting
the dimension parameter in reduced rank regression). However, the parametric families often
have a nested and possibly combinatorially complicated structure (e.g. Bayesian Networks,
sparsity constraints etc); also, the choice of which families of parametric models to include
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bears the danger of overfitting in the model domain. While not a concrete question, this
dilemma is probably interesting from a conceptual point of view.

Automatization. While Singular Learning Theory is capable of providing standard co-
ordinates, learning rates, and model selection criteria in a canonical way, the calculations
involving desingularization leading there are already very complicated for rather elementary
model classes, see e.g. the series of papers of Aoyagi and Watanabe. For anyone wanting
to apply those methods to real data, and subsequently for a broader Machine Learning au-
dience, it would be very interesting to have a statistical toolbox or software library which
integrates model specification, resolution of singularities, model fitting and model selection.
As Algebraists, Statisticians and Machine Learners will attend the conference, this could be
a perfect opportunity to discuss the limitations and chances of such a project.

A.7 Letac, Gerard

(1) Let I1, . . . , In be finite sets and let D be a family of non empty subsets of V =
{1, . . . , n} such that D ⊂ D′ and D′ ∈ D implies D ∈ D. The hierarchical model governed
by D is the set of probabilities (p(i)) on I = I1 × . . . × In such that p(i) > 0 for all
i ∈ I and such that log p(i) =

∑
D∈D λD(i) where i 7→ λD(i) does not depend on iv when

v /∈ D. If D is the family of the complete subsets of a graph, the hierarchical model is said
to be graphical. For instance if n = 3 and D0 = {1, 2, 3, 12, 23, 13} is not graphical. If
Iv = {0, . . . , cv − 1} and if S(i) = {v; iv 6= 0} introduce J = {i;S(i) ∈ D} and the symbol
j / i for saying that S(j) ⊂ S(i) and iS(j) = jS(j). Denote by (ej)j∈J the canonical basis
of RJ . The hierarchical model is actually a exponential family parameterized by RJ and
concentrated on the polytope with extreme points fi =

∑
j/i ej where i ∈ I. It is generated

by the uniform measure on the set of the c1 . . . cn vectors fi. For instance if n = 3 c1 = c2 = 3
and c3 = 2 and D = {1, 2, 3, 12, 23} then the set J has 11 elements and the polytope in R11

has 3× 3× 2 = 18 vertices.

(2) In general, given an open convex set C in Rd containing no line, its characteristic
function JC is the real function on C defined by

JC(m) = d!Vol(C −m)o = d!

∫

Co

(1− 〈θ,m〉)−d−1dθ =

∫

Rd

e〈θ,m〉−hC(θ)dθ

where Co = {θ ∈ Rd ; 〈θ, x〉 ≤ 1∀x ∈ C} is the polar set of C and where hC is the support
function defined by hC(θ) = sup{〈θ, x〉 ; x ∈ C}

(3) A feature of the Diaconis Ylvisaker conjugate family of a natural exponential family
F generated by some positive measure µ on Rd with Laplace transform ekµ(θ) is this: assume
here that µ has a compact convex support with a non empty interior C. If α > 0 and if m is
in C of F then I(m,α) =

∫
Rd
eα〈θ,m〉−kµ(θ)) is finite. Under these circumstances this is an easy

exercise of calculus to prove that limα→0 α
dI(m,α) = JC(m). Note that this limit depends

on µ only through its convex support.

(4) If we want to use the Bayesian factor method for choosing between two hierarchical
models governed by D1 and D2 this Bayesian factor is expressed as

B(α) =
I1(

αm1+t1
α+N

, α +N)I2(m2, α)

I2(
αm2+t2
α+N

, α +N)I1(m1, α)

where t1 and t2 are in the polytopes C1 and C2 attached to the two hierarchical models
and t1 and t2 depend on the N observations which have been done, and m1 and m2 are
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parameters in the open convex polytopes C1 and C2 which have been fixed for initialization
of the Bayesian procedure. The basic idea of our method is to realize that the value of α
should not be important and that we can make α→ 0 in B(α). If t1 and t2 are in C1 and C2,
what is described above gives easily an asymptotic expression of B(α). If either t1 or t2 are
on the boundary of the polytopes C1 and C2 a delicate study of the behavior of the function
JC(m) at the boundary of C becomes necessary.

(5) According to the interests of participants, I will give details about this asymptotic
behavior of JC(m) at the boundary, I will describe the properties of JC(m) as a rational
function when C is a general polytope, or I will make explicit calculations of JC for some
particularly interesting polytopes C like quadrangles in the plane, octahedron, polytopes
associated to a decomposable graphical model or to a cyclic graphical model and the hier-
archical model D0 mentioned above.

A.8 Leykin, Anton

I am interested in computing the so-called jumping numbers (in particular, the log
canonical threshold) for an algebraic variety, which has applications in statistics.

A.9 Lin, Shaowei

My research interests are in algebraic statistics and computational algebraic geometry.
To me, the two greatest needs in singular learning theory are as follows.

Firstly, statisticians need an intuitive geometric understanding of the complexity of a
model and an example of how such an understanding can help resolve dilemmas in model
selection. One way of measuring the complexity of a model is through its learning coefficient.
This coefficient is in general difficult to compute. Therefore, to motivate research effort in
calculating this number, we need to explore more reasons for the importance of the learning
coefficient in many questions about statistical modelling and machine learning.

1a. Can we design information criteria or learning algorithms which have provably
better performance and use the learning coefficient in a critical way?

1b. Can we design MCMC methods which give better approximations of the likelihood
integral by using a desingularization map for the model.

1c. How do we compute the constant term in Watanabe’s asymptotic expansion of
the expected value of the stochastic complexity? Can we employ this constant in some
information criterion?

Secondly, computational mathematicians need to come up with better methods for
calculating the learning coefficient, methods which statisticians can understand and use.
Currently, bounds for the learning coefficient are mainly computed using clever manipula-
tions of the Kullback-Leibler function, or of the fiber ideal (see my PhD dissertation). There
are general algorithms for finding a resolution of singularities for a function or ideal, but
these algorithms are very slow on statistical problems which have high dimensional param-
eter spaces. Meanwhile, there are effective tools which work in nondegenerate cases, such
as Varchenko’s Newton polyhedra method. It would be useful to identify statistical models
where this polyhedral method gives meaningful results.

2a. For directed graphical models, are most singularities simple normal crossings
(SNCs)? What about tree models (see Piotr Zwiernik’s work)? What about undirected
models? If the singularities are SNCs, how do we compute the learning coefficient at these
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points? Is the fiber ideal sos-nondegenerate? If it is, we can use the Newton polyhedra
method. If not, what is a counter-example?

2b. The Newton polyhedra method works for points on the interior of the parameter
space. For points on the boundary of the parameter space, how do we compute the learning
coefficient? What if the boundary is a simple normal crossing? What if it is just a normal
crossing? Can we extend the Newton polyhedra method to work in these cases?

We know that the learning coefficient of a model with respect to a true distribution is
the minimum of learning coefficients at points in the parameter space which map to the true
distribution. This raises the following question:

2c. Can we compute where this mimimum occurs on the fiber over the true distribution?
Experimentally, we find that this minimum occurs at points where the local degree of the
KL function (more generally, the local multiplicity of the fiber ideal) is maximized. Can we
prove or disprove this conjecture?

A.10 Montufar Cuartas, Guido

Understand the geometry of Restricted Boltzmann Machines and of Deep Belief Net-
works.

A.11 Pericchi, Luis

I have been working in Hypothesis Testing and Model Selection, mainly under a
Bayesian approach.

Some of my interest are:

1) Generalization of Objective Priors for Model Selection and hypothesis testing, like
Intrinsic Priors.

2) Generalization of BIC

3) Optimal Choice of Training Samples

4) Approximations to the computation of Evidences (marginal likelihoods) and Bayes
Factors

5) Bridges between Bayesian and Significance Testing Approaches. How to reconcile
the disagreement?

References:

-Berger J.O. and Pericchi L.R. (1996) The Intrinsic Bayes Factor for Model Selection
and Prediction. Journal of the American Statistical Association, 91, 433, p. 109-122.

-Berger J.O. and Pericchi L.R. (1996) The Intrinsic Bayes Factor for Linear Models
(invited discussant: Prof. D. Dey, University of Connecticut, USA). Bayesian Statistics 5,
Bernardo J.M. et al editors. Oxford University Press. Invited conference. p. 25-44

-Berger J.O. and Pericchi L.R. (2001) Objective Bayesian Model Selection. Introduc-
tion and Comparisons, in Lectures Notes of the Institute of Mathematical Statistics. ?Model
Selection?, editor: P. Lahiri, pp. 135-207.

-Berger J.O. and Pericchi LR. (2004) Training samples in objective Bayesian model
selection. Annals of Statistics, 32, 3, p. 841-869.

- Pericchi L.R. (2005) Model Selection and Hypothesis Testing based on Objective
Probabilities and Bayes Factors. Elsevier B.V. Handbook of Statistics, vol. 25. p. 115-149.
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-Pericchi, L.R. (2010) How large should be the training sample? In the book: ?Frontiers
of Decision Making and Bayesian Analysis. In Honor of James O. Berger, Chen MH et al
editors. Springer.P. 130-142

A.12 Petrovic, Sonja

I am attending this workshop to learn about the model selection problem at singular
points. I have recently started reading Watanabe’s book on the topic, but I am still not clear
how a statistician might use the learning coefficients effectively in practice. I would like to
see this done on an example, perhaps of the sort Mathias Drton is suggesting.

Also, I would like to see a set of examples where one can compute the learning coeffi-
cients, using Anton Leykin’s code for example, for a family of Gaussian models.

Finally, I would like to learn how I can “understand” the singularities of discrete
graphical models that are relevant for machine learning, for example the Boltzmann Machine.

A.13 Plummer, Martyn

My main interest is in statistical computing and model choice for Bayesian hierarchical
models. In the last 10 years, the Deviance Information Criterion (DIC) has become a popular
model choice criterion, largely because it is easy to calculate using Markov Chain Monte Carlo
(MCMC) methods and, in particular, because it is implemented in the popular OpenBUGS
software (www.openbugs.info).

DIC extends the Akaike Information Criterion to Bayesian hierarchical models by re-
placing the number of parameters p with an estimated “effective number of parameters” pD.
DIC was introduced with only a heuristic justification by Spiegelhalter et al (2002). My
own work (Plummer 2008) is an attempt to establish a rigorous foundation for DIC. This
work suggests that DIC is an approximation that requires certain asymptotic conditions for
its validity. In particular, a necessary (but not sufficient) condition is pD ¿ n where n is
the sample size. Thus it seems plausible that DIC is being mis-applied to models where
the asymptotic conditions do not hold. Moreover, we currently lack an easily computable

criterion for such models.

A second issue of interest to Bayesian statisticians is how to extend DIC to models with
missing data. In the Bayesian approach, missing data and unknown parameters are treated
symmetrically as unobserved random variables. However, in the model choice problem, we
may wish to treat the missing data as a nuisance, and the model parameters as the “focus”
of interest. Finite mixture models are an important test case for this problem. An extensive
survey of possible solutions was provided by Celeux et al (2006) but the question remains
unresolved. Again, the problem is to find a criterion that is both theoretically sound and
computationally feasible.

I hope to gain some insight into these issues from the workshop by discussing parallel
developments in machine learning with other participants.

• Celeux, G., Forbes, F., Robert, C. and Titterington, M. (2006). Deviance information
criteria for missing data models. Bayesian Analysis 1: 701-706.
• Plummer M. (2008) Penalized loss functions for Bayesian model comparison. Bio-
statistics 9:523-539.
• Spiegelhalter D.J., Best, N., Carlin, B. Van der Linde A. (2002) Bayesian measures of
of model complexity and fit (with discussion) Journal of the Royal Statistical Society,
Series B, 64: 583-639.
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A.14 Ray, Surajit

My research interests are in the area of model selection, the theory and geometry
of mixture models and functional data analysis. I am especially interested in challenges
presented by “large magnitude”, both in the dimension of data vectors and in the number
of vector. Core areas of methodological research include multivariate mixtures, structural
equations models, high-dimensional clustering and functional clustering. In the context of
this workshop I am specifically interested in exploring two aspects of model selection in the
broad area of mixture models and clustering.

The first objective is to explore the upperbound on the number of modes a two compo-
nent mixture of elliptical distribution. A recent paper by Ray and Ren (2011) [To appear in
Journal of Multivariate Analysis] shows that one can get as many as D+1 modes from a two
component normal mixture in D dimensions. Is the same true for any elliptical distribution.
Further I want to explore if one can obtain an upperbound on the number of modes of a
mixture of k components. The conjecture is that the answer to the above questions lie in
the analysis of their respective ridgeline manifold described in Ray and Lindsay (2005).

The second problem relates to the providing an inferential framework to determine the
statistical significance of modal clusters (Li et. al., 2008). The test statistics based on height
distributions have been recently been used for inference on modes by Comaniciu et al. (2002)
and (Burman and Polonik, 2009). The steps for developing the inferential framework might
involve the following steps

1. Design a test statistic for two specified clusters, based on the ratio of the heights

between the saddle point and the mode with minimum height, that is RH = fs(x)
fm(x)

.

2. For a pre specified smoothing parameter, using kernel density estimator, we can

estimate this ratio by R̂H = f̂hs (x)

f̂hm(x)
.

3. Propose the hypothesis H0 : RH = 1 vs HA : RH < 1 to test the significance of these
two clusters. Rejection of the test will imply the existence of separate clusters.

4. Explore the sampling distribution of R̂H and finally compute the critical value the
test statistic to accept or reject H0 : RH = 1 vs HA : RH < 1

5. Use Roy’s union intersection principle to decompose the complex hypothesis of “how
many clusters” at a specified level and build the appropriate test statistic and the
critical region to provide an answer.

But how do we arrive at the distribution of RH?

A.15 Slavkovic, Aleksandra

1. Ecological Inference

Ecological inference refers to performing statistical inference about individuals in pres-
ence of aggregated data (i.e., only partial information is available). By nature, ecological
models are non-identifiable and contain missing data. There is no well accepted solution to
this problem, and most of the current solutions are applicable only to contingency tables
with smaller dimension. There are links to latent class models, but this link has not been
explored and the model selection is problematic. These models are also hierarchical in nature
relying on Bayesian inference, again facing issue with model selection. We have begun some
exploratory analysis of understanding the geometry of these models.

2. Causal inference with observational data
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Linked to the above ecological inference problems, is causal inference with observational
data. One of the central issues in causal inference framework is learning a causal model from
observational data. Different frameworks have been proposed, namely Potential Outcome
and Causal Diagrams. The latter are typically tied to Causal models that are generally
represented in the form of a family of Bayesian Networks called Partial ancestral graphs
(PAGs). PAGs are equivalence classes of Bayesian Networks with hidden variables. A very
specific question is to see how can we perform learning and model selection of causal Bayesian
Networks. But more generally, can we utilize tools from algebraic geometry and singular
learning theory to establish equivalences between assumptions of these two frameworks. In
a paper by Karwa, Slavkovic and Donnell (2011), we discuss some of these issues but from
applied perspective (arxiv.org/pdf/1107.4855).

Generalized Estimating Equations (GEEs) have not been considered in either of these
two settings, and their semi-parametric nature may help with model fit and selection. Fur-
thermore, I am interested in possible developments of model selection criteria that take into
consideration finite sample properties.

A.16 Sturmfels, Bernd

I am interested in algorithms in algebraic geometry and their applications in wide
range of contexts, including those in statistics. The analysis of singularities for marginal
likelihood integrals and the resulting refined information criteria tie in very nicely with topics
of considerable interest to algebraic geometers, such as the log-canonical threshold. I am
optimistic that, during the workshop week, we can achieve much progress on the computation
of such quantities for relevant models. One such interesting model is the restricted Boltzmann
machine.

A.17 Sullivant, Seth

I am attending this workshop to learn more about this topic. My impression is that
most of the work in this area has been focused on the case of models for discrete random
variables (e.g. latent variable discrete graphical models). I am curious as to what can be
done for gaussian graphical models. There are many families of latent variable gaussian
graphical models where explicit defining equations are known, the equations are determi-
nantal constraints on a symmetric covariance matrix, and it should be possible to analyze
the singularities in some cases.

A.18 Watanabe, Sumio

Introduction
This short article introduces research themes which are discussed in the workshop, “Sin-

gular learning theory: algebraic geometry and model selection”, held at American Institute
of Mathematics, December 12-16, 2011.

From Statistics to Algebraic Geometry
Many statistical models which have hidden variables, hierarchical structures, or sub-

modules are not regular statistical models, because neither the map from the parameter to
the probability distribution is one-to-one nor Fisher information matrix is positive definite.
In model selection or statistical hypothesis test for such statistical models, the likelihood
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function can not be approximated by any quadratic form. Therefore, neither the log like-
lihood ratio is subject to the χ2 distribution nor AIC, BIC, MDL, or DIC has theoretical
foundation. Conventional statistical asymptotic theories do not hold.

In statistical model evaluation process, we have three important random variables.
Let X1, X2, ..., Xn be random variables which are independently subject to the probability
density function q(x). For a statistical model p(x|w) and a prior ϕ(w), the free energy or
the minus Bayes log marginal is defined by

F = − log

∫ n∏

i=1

p(Xi|w)ϕ(w)dw.

The generalization error G and the training error T are also defined by

G = −

∫
q(x) logEw[p(x|w)]dx,

T = −
1

n

n∑

i=1

logEw[p(Xi|w)],

where Ew[ ] denotes the expectation value over the posterior distribution with the inverse
temperature β. These three variables are invariant under an analytic transform w = g(u) by

w = g(u)

p(x|w)dx = p(x|g(u))dx

ϕ(w)dw = ϕ(g(u))|g′(u)|du

where |g′(u)| is the Jacobian determinant. Hence They are understood as the generators of
the birational invariants.

In fact, the first nontrivial term in the asymptotic expansion of F is equal to λ log n
where λ is the well-known birational invariant, the real log canonical threshold. Moreover,
the first nontrivial term of E[G] is equal to {(λ − ν)/β + ν}/n where ν = ν(β) is the new
birational invariants, the singular fluctuation that satisfies

ν(β) = lim
n→∞

β

2
E[V ],

where

V =
n∑

i=1

{Ew[(log p(Xi|w))
2]− Ew[log p(Xi|w)]

2}.

Therefore the singular fluctuation shows a kind of variance of the log likelihood function
near singularities.

In regular statistical models, λ = ν = d/2, where d is the dimension of the parameter,
which is the mathematical foundation of BIC and AIC. However, in general, they are different
from d/2. We would like to ask what mathematical properties such birational invariants
represent. Also we want to know the mathematical foundation on which such problem will
be resolved.

This issue has connections to large fields in mathematics, algebraic geometry, algebraic
analysis, and commutative ring theory. In fact, resolution of singularities, Bernstein-Sato
polynomial, toric modification using Newton diagram, Jet-scheme analysis and so on. We
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expect that mathematical questions in singular statistics make us open the new mathematical
field where algebraic variety-valued random variables are studied.

From Algebraic Geometry to Statistics
On the other hand, there are at least three different applications of algebraic geometry

to statistics.

The first application of algebraic geometry is the direct evaluation of several random
variables. For example, if we know the real log canonical threshold and singular fluctuation,
then we can evaluate how appropriate the statistical model and the prior compared to the
numerical values of the free energy or the generalization error. These are the generalizations
of BIC and AIC in regular models to general models.

The second application is the evaluation of the Markov chain Monte Calro (MCMC)
methods. In order to approximate the posterior distribution, MCMC method is often nec-
essary. However, it is still difficult to evaluate the MCMC simulations. For a given set of
a true distribution, a statistical model, and a prior, we can evaluate the accuracy of the
MCMC simulation if we know the real log canonical threshold and the singular fluctuation.

The last application is to find the mathematical law in statistics based on algebraic
geometry. For example, based on algebraic geometrical method, we can prove that there are
universal relation among G, T , and V

E[G] = E[T ] +
β

n
E[V ] + o(

1

n
).

This relation holds for both regular and singular cases, hence is very useful to estimate
the generalization error from the training error. Recently, we found that this equation is
asymptotically equivalent to the cross-validation.

Algebraic Geometry and Statistics
To study an algebraic variety V , we need the ideal I(V ). If V is the set of true

parameters in statistics, then the log density ratio function satisfies

1

n

n∑

i=1

log
q(Xi)

p(Xi|w)
∈ I(V ).

Also its expectation satisfies ∫
q(x) log

q(x)

p(x|w)
dx ∈ I(V ).

In regular statistical theory, only maximal ideal

I(V ) = 〈w1, w2, ..., wd〉

was studied because the log likelihood function can be approximated by a quadratic form.
However, in general statistical theory, general ideals are necessary. For example, in a regres-
sion model,

Y = a tanh(bx) + c tanh(dx) + noise,

for the case that the true distribution is Y = 0 + noise, the ideal is

I(V ) = 〈ab+ cd, ab3 + cd3〉.

This fact shows that

“To estimate the structure of the true distribution, algebraic geometry is necessary.”
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We expect that a lot of algebraic geometrical studies are essential to future statistics and
that new birational invariants are found in statistics.

A.19 Xi, Jing

I am interested in studying contingency tables whose cells are distributed according
to a hierarchical loglinear model. I have worked on estimating the number of multi-way
contingency tables as well as multi-way zero-one contingency tables via sequential importance
sampling procedures (see more details at xia,xib).

In the workshop I am interested in computational experiment on the Diaconis-Ylvisaker
conjugate prior D-Y with the software LattE Integrale. For simulation study in my pre-
vious work, I have used the older version of LattE lattesoft. Thus it is familiar for me to use
this software. The Diaconis-Ylvisaker conjugate prior is the form of

I(m,α)−1L(θ)−α exp(α < θ,m >)dθ

where L is its Laplace transform, m and α are hyperparameters and I(m,α) is the nor-
malization constant. [Massam] called this prior as the generalized hyper Dirichlet. In this
workshop I will focus on the computation of I(m,α). This quantity is needed to be computed
when doing a Bayesian model search. I(m,α) is the form of

I(m,α) =

∫

R|J|

L(θ)−α exp(α < θ,m >)dθ,

where J is a subset of the index set of cells I for contingency tables defined by a certain model.
This is the integration over the |J |-dimensional unit cube, of the power −α of a polynomial
of degree at most |J |, multiplied by a product of |J | independent beta densities. [Massam]
showed this integration as the form of rational function (Equation (15)). Therefore it would
be interesting to compute these rational functions with the software LattE Integrale latte1.
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A.20 Zhang, Yongli

In the area of model selection I am particularly interested in the following questions:
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• How to identify the true model as the number of variables p is much greater than
the sample size n? Especially, the n-related criterion like BIC is inadequate in high
dimensional data;
• The estimation of risk (MSE) as the model selection uncertainty is taken into account.

Some progress has been made in the above two areas and the results are presented in Zhang
and Shen (2010a) and Zhang and Shen (2010b). Concerning singular learning theory I want
to touch on the following two questions:

• The Hidden Markov Model is widely used in econometric time series modeling, but
the number of states is often given a priori without any empirical evidence. How to
select the number of states is worth future input.
• As is well known LASSO does not work very well as there exists high correlation
between predictors in the true model. Could WAIC play a role in high dimensional
data learning?
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A.21 Zwiernik, Piotr

My research focuses on graphical models with hidden variables. In particular I am
interested in models induced by directed trees such that all the inner nodes represent hidden
variables. Some familiar examples are hidden Markov models and general Markov models
used in phylogenetics. In the context of singular learning theory these models are particularly
interesting and have many links to algebraic geometry and combinatorics. The singularities
which arise are simple normal crossings with nice poset structure. My recent work on this
topic will appear in Journal of Machine Learning Research. This paper was an extension
of a previous result of Rusakov and Geiger (2005). I obtained the generalization of the
BIC formula in the case when the limit of the likelihood function for large sample sizes is
maximized over a singular subset of the parameter space. The main idea was to use the
geometric understanding of possible fibers of the parametrization.

I would be interested in studying similar problems for related classes of models. How-
ever, in addition, I would like to understand if there is any efficient way of dealing with
points on the boundary of the parameter space at least in some simple cases.


