PROBLEMS ON PAVING AND THE KADISON-SINGER PROBLEM

ABSTRACT. For a background and up to date information about paving see the posted note: *Paving and the Kadison-Singer Problem*. Please send problems which should be posted in this section to Pete Casazza at pete@math.missouri.edu.

1. NOTATION

Notation 1.1. Given an orthonormal basis $\{e_i\}_{i\in I}$ for a Hilbert space \mathbb{H} , for any $A\subset I$ we denote by P_A the diagonal projection whose matrix has entries all zero except for the (i,i)-entries for $i\in A$ which are all one. For a matrix $A=(a_{ij})_{i,j=1}^n$ set $\delta_p=\max\{|a_{ii}|:i=1,2,\cdots,n\}$. A diagonal symmetry is a diagonal matrix $\{a_{ij}\}_{i,j=1}^n$ with $|a_{ii}|=1$ for $1\leq i\leq n$ and $a_{ij}=0$ otherwise.

Notation 1.2. Given an orthonormal basis $\{e_i\}_{i\in I}$ for a Hilbert space \mathbb{H} , a **k** diagonal decomposition of the identity (k-d.d. for short) is a family of diagonal projections with disjoint ranges and

$$\sum_{i=1}^{k} P_i = I.$$

Notation 1.3. If A is an $n \times n$ matrix, define

$$\alpha_k(A) = min\{max ||P_iAP_i|| : \{P_i\}_{i=1}^k \text{ is a } k\text{-}d.d.\}$$

and if A is an infinite matrix bounded in the operator norm, define

$$\alpha_k(A) = \inf\{\max ||P_iAP_i|| : \{P_i\}_{i=1}^k \text{ is a } k\text{-}d.d.\}.$$

If $A \neq 0$, in both cases define

$$\tilde{\alpha}_k(A) = \frac{\alpha_k(A)}{\|A\|}.$$

2. The Paving Conjecture

Anderson's Paving Conjecture (PC) [2]

For every $\epsilon > 0$, there is some "universal" positive integer $k = k(\epsilon)$ so that for every zero-diagonal finite matrix A, there exists a k-d.d. $\{P_i\}_{i=1}^k$ so that for all $i = 1, 2, \dots, k$ we have

When we have the inequality in Equation 2.1 for a matrix A, we say that A is (k, ϵ) -pavable.

Given a fixed matrix A, if for every $\epsilon < 1$ there is a $k \in \mathbb{N}$ so that A is (k, ϵ) -pavable then we say that A is **pavable**. If we have a class of matrices, we say this **class is pavable** (respectively, (k, ϵ) -pavable) if every member of the class is pavable (respectively, $(k\epsilon)$ -pavable).

Paving for an arbitrary matrix A means paving for A - E(A) where E(A) denotes the diagonal of A with respect to a fixed basis. A simple iteration argument shows that PC is equivalent to the existence of a universal k working for just one fixed $\epsilon < 1$.

There are a number of restricted classes of matrices for which paveability with respect to any fixed basis is equivalent to PC:

- 1. Self-adjoint matrices [5, 6].
- 2. Unitary operators [5, 6].
- 3. Positive operators [5, 6].
- 4. Invertible operators (or invertible operators with zero diagonal) [5, 6]
- 5. Orthogonal projections [5, 6]
- 6. Gram matrices [5, 6].
- 7. Lower (respectively upper) triangular matrices [7].

3. PAVING CONJECTURES EQUIVALENT TO PC

Conjecture 3.1. For every zero-diagonal matrix A (finite or infinite) there is a k and $\epsilon < 1$ so that A is (k, ϵ) -parable. I.e., For every zero-diagonal matrix A we have $\tilde{\alpha}_k(A) < 1$ for some k.

The equivalence of Conjecture 3.1 and PC is a simple diagonal process. Note that Conjecture 3.1 does not require the universality of k and the bound below one depends on A.

Conjecture 3.2. There is a universal k so that for all zero-diagonal matrices A (finite and infinite), there is a $\epsilon < 1$ so that A is (k, ϵ) -pavable. (I.e., For every zero-diagonal matrix A we have $\tilde{\alpha}_k(A) < 1$.

Note: The rest of the conjectures in this section require universal constants k and $\epsilon < 1$ which are independent of $n \in \mathbb{N}$ and the matrix.

Conjecture 3.3. [4] There exists an $\epsilon < 1$ and a natural number k so that all orthogonal projections A on ℓ_2^{2n} with 1/2's on the diagonal are (k, ϵ) -pavable.

Note that Conjecture 3.3 does not require zero-diagonal. In [4] it is shown that Conjecture 3.3 fails for k = 2. I.e. There is no $\epsilon < 1$ so that this class of projections is $(2, \epsilon)$ -payable.

Conjecture 3.4. [4] There is a universal k and an $\epsilon < 1$ so that every norm one self-adjoint operator U with zero diagonal and satisfying $U^2 = I$ is (k, ϵ) -pavable.

Conjecture 3.5. [9] There exist universal constants $0 < \delta, \epsilon < 1$ and $k \in \mathbb{N}$ so that all orthogonal projections P on ℓ_2^n with $\delta(P) \leq \delta$ are (k, ϵ) -pavable.

Weaver also posed an equal norm version of this conjecture.

Conjecture 3.6. [9] There exist universal constants $0 < \delta$, $\sqrt{\delta} \le \epsilon < 1$ and $k \in \mathbb{N}$ so that all orthogonal projections P on ℓ_2^n with $\delta(P) \le \delta$ and $\|Pe_i\| = \|Pe_j\|$ for all $i, j = 1, 2, \dots, n$ are (k, ϵ) -pavable.

4. Related Problems

Problem 4.1. If PC is true, then are the upper triangular invertibles on $\ell_2(\mathbb{N})$ path connected? (Larson, Paulsen, Orr, Weiss, Zhang).

The problem of the connectedness of the upper triangular invertible matrices is well-known in the non-self-adjoint operator community.

Problem 4.2. Are there analogs for Problem 4.1 in other classes of operators such as Laurent, Toeplitz, analytic toeplitz, etc.? (Weiss).

Problem 4.3. Are the Laurent operators paveable? (Bourgain-Tzafriri [3], Halpern, Kaftal and Weiss [8]).

Problem 4.4. Are all Laurent operators with H^{∞} -symbol paveable? (Paulsen, Weiss).

Problem 4.5. Is PC equivalent to PC for some k-d.d. $\{P_i\}_{i=1}^k$ where

$$|rank P_i - rank P_j| \le 1$$
, for all $1 \le i, j \le k$?

(Casazza, Edidin, Weiss).

5. The Akemann-Anderson Conjecture

Akemann and Anderson [1] posed a conjecture which would imply a positive solution to KS.

Conjecture B ([1], 7.1.3) There exists $\gamma, \epsilon > 0$ (and independent of n) such that for any projection P with $\delta_p < \gamma$ there is a diagonal symmetry S such that $||PSP|| < 1 - \epsilon$.

Conjecture B is still open despite considerable effort having been expended on it. Weaver [10] states that a counterexample to Conjecture B would probably lead to a negative solution to the Paving Conjecture.

References

- [1] C.A. Akemann and J. Anderson, *Lyapunov theorems for operator algebras*, Mem. AMS **94** (1991).
- [2] J. Anderson, Extreme points in sets of positive linear maps on B(H), Jour. Functional Analysis **31** (1979) 195-217.
- [3] J. Bourgain and L. Tzafriri, On a problem of Kadison and Singer, J. Reine Angew. Math. **420** (1991), 1-43.
- [4] P.G. Casazza, D. Edidin, D. Kalra and V. Paulsen, *Projections and the Kadison-Singer Problem*, Preprint.
- [5] P.G. Casazza, M. Fickus, J.C. Tremain, and E. Weber, The Kadison-Singer Problem in Mathematics and Engineering: Part II: A detailed account, Operator Theory, Operator Algebras, and Applications (the 25th Great Plains Operator Theory Symposium), D. Han, P.E.T. Jorgensen and D.L. Larson, Eds., Contemporary Math, Vol 414 (2006) 299-356.

- [6] P.G. Casazza and J.C. Tremain, The Kadison-Singer problem in Mathematics and Engineering, Proceedings of the National Academy of Sciences, 103 No. 7 (2006) 2032-2039.
- [7] P.G. Casazza and J.C. Tremain, The Paving Conjecture is equivalent to the paving conjecture for triangular matrices, preprint.
- [8] H. Halpern, V. Kaftal and G. Weiss, *Matrix pavings and Laurent operators*, J. Op. Th. **16** (1986)121-140.
- [9] N. Weaver, The Kadison-Singer Problem in discrepancy theory, Discrete Math. 278 (2004), 227–239.
- [10] N. Weaver, A counterexample to a conjecture of Akemann and Anderson, Preprint.