Paving Small Matrices and The Kadison-Singer Extension Problem AIM Workshop Notes

Gary Weiss
Vrej Zarikian
University of Cincinnati
United States Naval Academy

Contents

Part 1. Pavings 5
Chapter 1. Notation 7
Chapter 2. 2-Pavings 9

1. Selfadjoint 9
2. Real Symmetric 12
Chapter 3. 3-Pavings 15
3. General 16
4. Selfadjoint 19
5. Nonnegative 23
Chapter 4. 2,3-Pavings Summary Table 25
Part 2. Supplementary Material and Tools 27
Chapter 5. Supplementary Material: 2-Pavings 29
Chapter 6. Supplementary Material: 3-Pavings 31
6. 4×4 General 31
Chapter 7. Tools 35
7. Universal Selfadjoint 3-Identity and consequences 35
8. Universal Selfadjoint 4-Identity and consequences 36
9. Operator Norm/p-Norm Comparisons 37
10. Operator Norm/Hilbert-Schmidt Norm Comparisons 40
11. Averaging and Constrained Averaging 43
Bibliography 45

Part 1

Pavings

CHAPTER 1

Notation

```
M}\mp@subsup{\mathbb{M}}{n}{}=n\timesn\mathrm{ complex matrices
M M
M}\mp@subsup{\mathbb{M}}{n,sa}{}=n\timesn\mathrm{ selfadjoint complex matrices
M}\mp@subsup{\mathbb{M}}{n,sa}{0}=n\timesn\mathrm{ selfadjoint complex matrices with zero diagonal
M}\mp@subsup{\mathbb{M}}{n,\mathrm{ sym }}{}=n\timesn\mathrm{ real symmetric matrices
M}\mp@subsup{\mathbb{M}}{n,\mathrm{ sym }}{0}=n\timesn\mathrm{ real symmetric matrices with zero diagonal
M
M}\mp@subsup{\mathbb{M}}{n,++}{0}=n\timesn\mathrm{ non-negative matrices with zero diagonal
\mp@subsup{\mathbb{D}}{n}{}=n\timesn diagonal matrices
```

If $A \in \mathbb{M}_{n}$, define

$$
\alpha_{k}(A)=\min _{\text {diagonal projections } P_{1}+\cdots+P_{k}=I_{n}} \max _{1 \leq j \leq k}\left\|P_{j} A P_{j}\right\|
$$

If $0 \neq A \in \mathbb{M}_{n}$, define

$$
\tilde{\alpha}_{k}(A)=\frac{\alpha_{k}(A)}{\|A\|} .
$$

If $\mathcal{S} \subset \mathbb{M}_{n}$, define

$$
\tilde{\alpha}_{k}(\mathcal{S})=\sup _{0 \neq A \in \mathcal{S}} \tilde{\alpha}_{k}(A)
$$

CHAPTER 2

2-Pavings

Theorem 2.1 (2-pavings).

n	$\tilde{\alpha}_{2}\left(\mathbb{M}_{n}^{0}\right)$	$\tilde{\alpha}_{2}\left(\mathbb{M}_{n, s a}^{0}\right)$	$\tilde{\alpha}_{2}\left(\mathbb{M}_{n, s y m}^{0}\right)$
3	1	$\frac{1}{\sqrt{3}}$	$\frac{1}{2}$
		0.5773	0.5000
4			$\left[?, \frac{1}{\sqrt{3}}\right]$
	$\prime \prime$	\prime	$[0.5493,0.5773]$
5		$\frac{2}{\sqrt{5}}$	$\frac{2}{\sqrt{5}}$
	$\prime \prime$	0.8944	0.8944

1. Selfadjoint

Proposition $2.2\left(3 \times 3\right.$ selfadjoint). $\tilde{\alpha}_{2}\left(\mathbb{M}_{3, s a}^{0}\right)=\frac{1}{\sqrt{3}} \approx 0.5773$.
Proof. Suppose

$$
A=\left[\begin{array}{ccc}
0 & a & b \\
\bar{a} & 0 & c \\
\bar{b} & \bar{c} & 0
\end{array}\right] \in \mathbb{M}_{3, s a}^{0} \quad \text { with } \alpha_{2}(A)=1
$$

Then $|a|,|b|,|c| \geq 1$. By the Universal Selfadjoint 3-Identity (Lemma 7.1),

$$
1=\frac{|a|^{2}+|b|^{2}+|c|^{2}}{\|A\|^{2}}+\frac{2|\operatorname{Re}(a \bar{b} c)|}{\|A\|^{3}} \geq \frac{3}{\|A\|^{2}} .
$$

Thus, $\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{1}{\sqrt{3}}$. This bound is attained by

$$
A=\left[\begin{array}{ccc}
0 & 1 & i \\
1 & 0 & 1 \\
-i & 1 & 0
\end{array}\right]
$$

because $\alpha_{2}(A)=1$ and $\|A\|=\sqrt{3}$ by Corollary 7.2.
Proposition $2.3\left(4 \times 4\right.$ selfadjoint). $\tilde{\alpha}_{2}\left(\mathbb{M}_{4, s a}^{0}\right)=\frac{1}{\sqrt{3}}$.
Proof. Suppose $A \in \mathbb{M}_{4, s a}^{0}$, with $\alpha_{2}(A)=1$. Create a graph $G=(V, E)$ as follows: $V=\{1,2,3,4\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|<1$. We have the following axioms:
(1) $G 11$ is not a subgraph of G. Otherwise, A admits a 2-2 paving of norm <1, violating the assumption $\alpha_{2}(A)=1$.
(2) For all i, the degree of i is greater than 0 . Otherwise, row i of A has three entries of absolute value $\geq 1 \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$.
(3) By removing a vertex from G, one cannot arrive at $G 4$. Otherwise, A has a 3 -compression of norm $\geq \sqrt{3} \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{1}{\sqrt{3}}$.

This exhausts all possible 4-graphs and hence proves the inequality.
Proposition $2.4\left(5 \times 5\right.$ selfadjoint). Let $\tilde{\alpha}_{2}\left(\mathbb{M}_{5, s a}^{0}\right)=\frac{2}{\sqrt{5}} \approx 0.8944$.
Proof. Suppose $A \in \mathbb{M}_{5, s a}^{0}$, with $\alpha_{2}(A)=1$. Create a graph $G=(V, E)$ as follows: $V=\{1,2,3,4,5\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|<1$. We may assume the following axiom:
(1) For all $i, \operatorname{deg}(i) \geq 3$. Otherwise, row i of A has at least two entries of absolute value $\geq 1 \Rightarrow\|A\| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{1}{\sqrt{2}} \approx 0.7071$.
This leaves graphs $G 50, G 51$, and $G 52$.
Case G50: Only two 2 -compressions have norm ≥ 1, and they are disjoint. Without loss of generality, $\left\|A_{12}\right\|,\left\|A_{34}\right\| \geq 1$. We claim that every 3 -compression has norm ≥ 1. Indeed, $\left\|A_{125}\right\| \geq\left\|A_{12}\right\| \geq 1,\left\|A_{345}\right\| \geq\left\|A_{34}\right\| \geq 1$, and the remaining 3 -compressions have norm ≥ 1 because their complementary 2compressions have norm <1. It follows that $\|A\| \geq \frac{\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{2}{\sqrt{5}}$.
Case G51: Only one 2 -compression has norm ≥ 1. Without loss of generality, $\left\|A_{12}\right\| \geq$ 1. It follows that

$$
\begin{aligned}
\|A\|^{2} & \geq \frac{1}{4}\|A\|_{H S}^{2} \\
& =\frac{1}{4}\left[\left\|A_{12}\right\|_{H S}^{2}+\frac{1}{2} \sum_{1 \in B, 2 \notin B}^{3}\|B\|_{H S}^{2}+\frac{1}{2} \sum_{2 \in B, 1 \notin B}^{3}\|B\|_{H S}^{2}\right] \\
& \geq \frac{1}{4}\left[2+\frac{1}{2} \cdot 3 \cdot \frac{3}{2}+\frac{1}{2} \cdot 3 \cdot \frac{3}{2}\right]=\frac{13}{8}
\end{aligned}
$$

Thus, $\|A\| \geq \sqrt{\frac{13}{8}} \Rightarrow \tilde{\alpha}_{2}(A) \leq \sqrt{\frac{8}{13}} \approx 0.7845$.
Case G52: Every 2-compression has norm $<1 \Rightarrow$ every 3-compression has norm ≥ 1

$$
\Rightarrow\|A\| \geq \frac{\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{2}{\sqrt{5}}
$$

The matrix

$$
A=\left[\begin{array}{ccccc}
0 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & -1 \\
1 & 1 & 0 & -1 & 1 \\
1 & 1 & -1 & 0 & -1 \\
1 & -1 & 1 & -1 & 0
\end{array}\right]
$$

shows that the inequality is sharp. The unimodular circulant

$$
B=\left[\begin{array}{ccccc}
0 & e^{2 \pi i / 5} & e^{-\pi i / 5} & e^{\pi i / 5} & e^{-2 \pi i / 5} \\
e^{-2 \pi i / 5} & 0 & e^{2 \pi i / 5} & e^{-\pi i / 5} & e^{\pi i / 5} \\
e^{\pi i / 5} & e^{-2 \pi i / 5} & 0 & e^{2 \pi i / 5} & e^{-\pi i / 5} \\
e^{-\pi i / 5} & e^{\pi i / 5} & e^{-2 \pi i / 5} & 0 & e^{2 \pi i / 5} \\
e^{2 \pi i / 5} & e^{-\pi i / 5} & e^{\pi i / 5} & e^{-2 \pi i / 5} & 0
\end{array}\right]
$$

also works. Note: A and B are unitarily equivalent.

Alternate Proof. Suppose $A \in \mathbb{M}_{5, s a}^{0}$, with $\alpha_{2}(A)=1$.
(1) Assume that all 3 -compressions of A have norm ≥ 1. Then $\tilde{\alpha}_{2}(A) \leq \frac{2}{\sqrt{5}}$ (see the previous proof).
(2) Assume that exactly one 3 -compression, say A_{345}, has norm <1, then $\left\|A_{12}\right\| \geq 1 \Rightarrow \tilde{\alpha}_{2}(A) \leq \sqrt{\frac{8}{13}}$ (see the previous proof).
(3) Assume that exactly two 3 -compressions have norm <1. We may assume that the complementary 2 -compressions are disjoint. Otherwise, $\|A\| \geq$ $\sqrt{2} \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{1}{\sqrt{2}}$. Without loss of generality, $\left\|A_{12}\right\|,\left\|A_{34}\right\| \geq 1$ and $\left\|A_{345}\right\|,\left\|A_{125}\right\|<1$. This is a contradiction.
(4) Assume that more than two 3 -compressions have norm <1. Then their complementary 2 -compressions cannot be disjoint. Thus, $\|A\| \geq \sqrt{2} \Rightarrow$ $\tilde{\alpha}_{2}(A) \leq \frac{1}{\sqrt{2}}$.

2. Real Symmetric

PROPOSITION 2.5 (3×3 real symmetric). $\quad \tilde{\alpha}_{2}\left(\mathbb{M}_{3, \text { sym }}^{0}\right)=\frac{1}{2}$.
Proof. Suppose

$$
A=\left[\begin{array}{lll}
0 & a & b \\
a & 0 & c \\
b & c & 0
\end{array}\right] \in \mathbb{M}_{3, \text { sym }}^{0} \quad \text { with } \alpha_{2}(A)=1
$$

Then $|a|,|b|,|c| \geq 1$. By the Universal Selfadjoint 3-Identity (Lemma 7.1),

$$
1=\frac{a^{2}+b^{2}+c^{2}}{\|A\|^{2}}+\frac{2|a b c|}{\|A\|^{3}} \geq \frac{3}{\|A\|^{2}}+\frac{2}{\|A\|^{3}}
$$

which implies $\|A\| \geq 2$, hence $\tilde{\alpha}_{2}(A) \leq \frac{1}{2}$. This bound is attained by

$$
A=\left[\begin{array}{lll}
0 & 1 & 1 \\
1 & 0 & 1 \\
1 & 1 & 0
\end{array}\right] \in \mathbb{M}_{3, s y m}^{0}
$$

since $\alpha_{2}(A)=1$ and $\|A\|=2$ by Corollary 7.2.
Lemma 2.6. Let

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
1 & 0 & d & e \\
1 & d & 0 & f \\
1 & e & f & 0
\end{array}\right] \in \mathbb{M}_{4, \text { sym }}^{0}
$$

If

$$
\left\|\left[\begin{array}{lll}
0 & d & e \\
d & 0 & f \\
e & f & 0
\end{array}\right]\right\| \geq 1
$$

then $\|A\| \geq(9.75)^{1 / 4} \approx 1.767$.
Proof. Let $x=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and

$$
B=\left[\begin{array}{lll}
0 & d & e \\
d & 0 & f \\
e & f & 0
\end{array}\right]
$$

Then

$$
A=\left[\begin{array}{cc}
0 & x \\
x^{*} & B
\end{array}\right] \Rightarrow A^{*} A=\left[\begin{array}{cc}
x x^{*} & x B \\
B^{*} x^{*} & x^{*} x+B^{*} B
\end{array}\right]
$$

Thus

$$
\begin{aligned}
\|A\|^{4} & =\left\|A^{*} A\right\|^{2} \geq\left\|\left[\begin{array}{ll}
x x^{*} & x B
\end{array}\right]\right\|^{2} \\
& =9+(d+e)^{2}+(d+f)^{2}+(e+f)^{2}
\end{aligned}
$$

We claim that

$$
(d+e)^{2}+(d+f)^{2}+(e+f)^{2} \geq d^{2}+e^{2}+f^{2} .
$$

Indeed, let $F(d, e, f)=(d+e)^{2}+(d+f)^{2}+(e+f)^{2}$ and $G(d, e, f)=d^{2}+e^{2}+f^{2}$. Using the Method of Lagrange Multipliers, we minimize $F(d, e, f)$ subject to the constraint $G(d, e, f)=r^{2}$:

$$
\begin{gathered}
2(d+e)+2(d+f)=2 \lambda d \\
2(d+e)+2(e+f)=2 \lambda e \\
2(d+f)+2(e+f)=2 \lambda f \\
\Rightarrow\left[\begin{array}{lll}
2 & 1 & 1 \\
1 & 2 & 1 \\
1 & 1 & 2
\end{array}\right]\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=\lambda\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right] \\
\Rightarrow\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{l}
x \\
x \\
x
\end{array}\right] \text { or }\left[\begin{array}{l}
d \\
e \\
f
\end{array}\right]=\left[\begin{array}{l}
x+y \\
x-y \\
-2 x
\end{array}\right] .
\end{gathered}
$$

In the former case,

$$
3 x^{2}=d^{2}+e^{2}+f^{2}=r^{2} \Rightarrow(d+e)^{2}+(d+f)^{2}+(e+f)^{2}=12 x^{2}=4 r^{2}
$$

In the later case,

$$
\begin{gathered}
(x+y)^{2}+(x-y)^{2}+(-2 x)^{2}=d^{2}+e^{2}+f^{2}=r^{2} \\
\Rightarrow(d+e)^{2}+(d+f)^{2}+(e+f)^{2}=(2 x)^{2}+(-x+y)^{2}+(-x-y)^{2}=r^{2}
\end{gathered}
$$

Thus, $r^{2} \leq(d+e)^{2}+(d+f)^{2}+(e+f)^{2} \leq 4 r^{2}$, which proves the claim. Now

$$
\|B\| \geq 1 \Rightarrow\|B\|_{H S}^{2} \geq 1.5 \Rightarrow d^{2}+e^{2}+f^{2} \geq 0.75
$$

Hence, $\|A\|^{4} \geq 9.75$, which proves the lemma.
Proposition 2.7 (4×4 real symmetric). $\tilde{\alpha}_{2}\left(\mathbb{M}_{4, \text { sym }}^{0}\right) \in[0.5493,0.5773]$.
Proof. Suppose $A \in \mathbb{M}_{4, \text { sym }}^{0}$, with $\alpha_{2}(A)=1$. Create a graph $G=(V, E)$ as follows: $V=\{1,2,3,4\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|<1$. We have the following axioms:
(1) $G 11$ is not a subgraph of G. Otherwise, A admits a 2-2 paving of norm <1, violating the assumption $\alpha_{2}(A)=1$.
(2) By removing a vertex from G, one cannot arrive at $G 4$. Otherwise, A has a 3-compression of norm $\geq 2 \Rightarrow\|A\| \geq 2 \Rightarrow \tilde{\alpha}_{2}(A) \leq \frac{1}{2}$.
This leaves only graph G12. Thus,

$$
A=\left[\begin{array}{llll}
0 & a & b & c \\
a & 0 & d & e \\
b & d & 0 & f \\
c & e & f & 0
\end{array}\right]
$$

where $|a|,|b|,|c| \geq 1,|d|,|e|,|f|<1$, and

$$
\left\|\left[\begin{array}{lll}
0 & d & e \\
d & 0 & f \\
e & f & 0
\end{array}\right]\right\| \geq 1
$$

Lower bound:

$$
A=\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
1 & 0 & -0.3946 & 0.6854 \\
1 & -0.3946 & 0 & -0.3986 \\
1 & 0.6854 & -0.3986 & 0
\end{array}\right]
$$

CHAPTER 3

3-Pavings

In 1987 the 3-paving problem was posed: whether or not 3-pavings suffice for Anderson's Paving Conjecture and hence for Kadison-Singer. To date we have heard of no refutation to this. Recall also the $\frac{2}{3}$-challenge from then: whether or not $\tilde{\alpha}_{3}\left(\mathbb{M}_{n}^{0}\right) \leq \frac{2}{3}$, which the following table refutes.

Theorem 3.1 (3-pavings).

n	$\tilde{\alpha}_{3}\left(\mathbb{M}_{n}^{0}\right)$	$\tilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)$	$\tilde{\alpha}_{3}\left(\mathbb{M}_{n,++}^{0}\right)$
4	$\frac{2}{1+\sqrt{5}}$	$\frac{1}{\sqrt{3}}$	κ
	0.6180	0.5773	0.5550
5			$\left[\kappa, \frac{2}{1+\sqrt{5}}\right]$
	$\prime \prime$	$\prime \prime$	$[0.5550,0.6180]$
6	$\frac{1}{\sqrt{2}}$		$\prime \prime$
	$\mathbf{0 . 7 0 7 1}$	$\prime \prime$	$\left." \kappa, \frac{2}{3}\right]$
7	$[?, 1)$	$\left[\frac{2}{3}, \frac{2}{\sqrt{7}}\right)$	$[0.5550,0.6667]$
	$[\mathbf{0 . 8 2 3 1 , 1})$	$[\mathbf{0 . 6 6 6 7 , 0 . 7 5 5 9})$	
8	$[?, 1]$	$\left[\frac{2}{3}, \frac{2}{\sqrt{5}}\right]$	
	$[0.8231,1]$	$[\mathbf{0 . 6 6 6 7}, \mathbf{0 . 8 9 4 4}]$	$\prime \prime$
10		$\left[\frac{\sqrt{5}}{3}, \mathbf{1}\right]$	
	$\prime \prime$	$[\mathbf{0 . 7 4 5 4 , \mathbf { 1 }]}$	$\prime \prime$

where

$$
\kappa=\sqrt{\frac{3}{5+2 \sqrt{7} \cos \left(\tan ^{-1}(3 \sqrt{3}) / 3\right)}},
$$

boldface signifies what we feel are the most interesting facts, "?" signifies a lack of a closed form, and " signifies "ditto from above".

1. General

Lemma 3.2. Let

$$
A=\left[\begin{array}{cc}
r_{1} e^{i \theta_{1}} & r_{2} e^{i \theta_{2}} \\
0 & r_{3} e^{i \theta_{3}}
\end{array}\right] \in \mathbb{M}_{2}
$$

Then there exist unitaries $U, V \in \mathbb{D}_{2}$ such that

$$
U A V=\left[\begin{array}{cc}
r_{1} & r_{2} \\
0 & r_{3}
\end{array}\right]
$$

Proof. Let

$$
U=\left[\begin{array}{cc}
e^{-i \theta_{2}} & 0 \\
0 & e^{-i \theta_{3}}
\end{array}\right], V=\left[\begin{array}{cc}
e^{i\left(\theta_{2}-\theta_{1}\right)} & 0 \\
0 & 1
\end{array}\right]
$$

Corollary 3.3. Let

$$
A=\left[\begin{array}{ll}
a & b \\
0 & c
\end{array}\right] \in \mathbb{M}_{2}
$$

If $|a|,|b|,|c| \geq 1$, then $\|A\| \geq \frac{1+\sqrt{5}}{2}$.
Proof. By the previous lemma,

$$
\|A\|=\left\|\left[\begin{array}{cc}
|a| & |b| \\
0 & |c|
\end{array}\right]\right\| \geq\left\|\left[\begin{array}{cc}
1 & 1 \\
0 & 1
\end{array}\right]\right\|=\frac{1+\sqrt{5}}{2}
$$

Proposition $3.4\left(4 \times 4\right.$ general). $\quad \tilde{\alpha_{3}}\left(\mathbb{M}_{4}^{0}\right)=\frac{2}{1+\sqrt{5}} \approx 0.6180$.
Proof. Let

$$
A=\left[\begin{array}{cccc}
0 & 1 & 1 & -\frac{2}{1+\sqrt{5}} \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \in \mathbb{M}_{4}^{0}
$$

Then $\tilde{\alpha}_{3}(A)=\frac{2}{1+\sqrt{5}}\left(\alpha_{3}(A)=1\right.$ and $\|A\|=\frac{1+\sqrt{5}}{2}$ by applying to the upper-right 3×3 corner either Parrott's Completion Lemma with Formula, or factoring the characteristic polynomial of the square of its absolute value, or Matlab).

Now suppose $A \in \mathbb{M}_{4}^{0}$, with $\alpha_{3}(A)=1$. Create a digraph $D=(V, E)$ as follows: $V=\{1,2,3,4\}$ and $(i, j) \in E$ if $\left|a_{i j}\right| \geq 1$. We may assume the following axioms:
(1) For all $i \neq j$, either $(i, j) \in E$ or $(j, i) \in E$. Otherwise A admits a 1-1-2 paving of norm <1, violating the assumption $\alpha_{3}(A)=1$.
(2) For all i, the in-degree of i and the out-degree of i are less than 3. Otherwise, $\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}} \approx 0.5774$.
This leaves only digraphs $D 149, D 185, D 186$, and $D 218$ as labeled in [1]. Now each of these digraphs has $D 12$ as a subgraph [ibid.]. Thus, $\|A\| \geq \frac{1+\sqrt{5}}{2}$ (Corollary 3.3) $\Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{2}{1+\sqrt{5}}$.

Proposition $3.5\left(5 \times 5\right.$ general). $\quad \tilde{\alpha}_{3}\left(\mathbb{M}_{5}^{0}\right)=\frac{2}{1+\sqrt{5}} \approx 0.6180$.
Proof. Clearly,

$$
\tilde{\alpha}_{3}\left(\mathbb{M}_{5}^{0}\right) \geq \tilde{\alpha}_{3}\left(\mathbb{M}_{4}^{0}\right)=\frac{2}{1+\sqrt{5}}
$$

Now let $A \in \mathbb{M}_{5}^{0}$, with $\alpha_{3}(A)=1$. Construct a graph $G=(V, E)$ as follows: $V=\{1,2,3,4,5\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|,\left|a_{j i}\right|<1$. We may assume the following axioms:
(1) $G 11$ is not a subgraph of G. Otherwise, G has a 1-2-2 paving of norm <1, violating the fact that $\alpha_{3}(A)=1$.
(2) By removing a vertex from G one cannot arrive at $G 8$. Otherwise, there exists a 4-compression B of A such that $\alpha_{3}(B) \geq 1$. Since $\tilde{\alpha}_{3}\left(\mathbb{M}_{4}^{0}\right)=\frac{2}{1+\sqrt{5}}$, this would imply $\|B\| \geq \frac{1+\sqrt{5}}{2} \Rightarrow\|A\| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{2}{1+\sqrt{5}}$.
This leaves $G 23$. After permuting indices, we may assume that

$$
A=\left[\begin{array}{ccccc}
0 & s_{12} & s_{13} & b_{14} & b_{15} \\
s_{21} & 0 & s_{23} & b_{24} & b_{25} \\
s_{31} & s_{32} & 0 & b_{34} & b_{35} \\
b_{41} & b_{42} & b_{43} & 0 & b_{45} \\
b_{51} & b_{52} & b_{53} & b_{54} & 0
\end{array}\right],
$$

where $\left|s_{i j}\right|<1$ and $\left.\max \left\{\left|b_{i j}\right|,\left|b_{j i}\right|\right\} \geq 1\right\}$ for all $i \neq j$. Permuting the indices 4 and 5 , if necessary, we may assume $\left|b_{45}\right| \geq 1$. If b_{51}, b_{52}, and b_{53} all have magnitude ≥ 1, then $\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}<\frac{2}{1+\sqrt{5}}$. Thus, we may assume that one of them has magnitude $<1 \Rightarrow$ either b_{15}, b_{25}, or b_{35} has magnitude ≥ 1. Permuting the indices 1,2 , and 3 , if necessary, we may assume $\left|b_{35}\right| \geq 1$. If $\left|b_{34}\right| \geq 1$, then

$$
\|A\| \geq\left\|\left[\begin{array}{cc}
b_{34} & b_{35} \\
0 & b_{45}
\end{array}\right]\right\| \geq \frac{1+\sqrt{5}}{2}
$$

Likewise, if $\left|b_{43}\right| \geq 1$, then

$$
\|A\| \geq\left\|\left[\begin{array}{cc}
0 & b_{35} \\
b_{43} & b_{45}
\end{array}\right]\right\| \geq \frac{1+\sqrt{5}}{2}
$$

It follows that $\tilde{\alpha}_{3}(A) \leq \frac{2}{1+\sqrt{5}}$.
Proposition $3.6\left(6 \times 6\right.$ general). $\quad \tilde{\alpha}_{3}\left(\mathbb{M}_{6}^{0}\right)=\frac{1}{\sqrt{2}} \approx 0.7071$.
Proof. Construct a graph $G=(V, E)$ as follows: $V=\{1,2,3,4,5,6\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|,\left|a_{j i}\right|<1$. We may assume the following axioms:
(1) $G 61$ is not a subgraph of G. Otherwise A would have a 2-2-2 paving of norm <1, violating the fact that $\alpha_{3}(A)=1$.
(2) By removing vertices from G, one cannot arrive at $G 8$. Otherwise A would have a 4 -compression B such that $\alpha_{3}(B) \geq 1$. Since $\tilde{\alpha}_{3}\left(\mathbb{M}_{4}^{0}\right)=\frac{2}{1+\sqrt{5}}$, this would imply $\|B\| \geq \frac{1+\sqrt{5}}{2} \Rightarrow\|A\| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{2}{1+\sqrt{5}}<\frac{1}{\sqrt{2}}$.
(3) For all vertices i, $\operatorname{deg}(i) \geq 3$. Otherwise, if $\operatorname{deg}(i) \leq 2$, then either row i or column i of A would have at least two entries of magnitude $\geq 1 \Rightarrow$ $\|A\| \geq \sqrt{2} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{2}}$.

This eliminates all graphs. Now let

$$
A=\left[\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 1 \\
\frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} & 0 & 1 & 0 \\
0 & 0 & 0 & -1 & 0 & 1 \\
-\frac{1}{2} & 1 & \frac{1}{2} & 0 & \frac{1}{\sqrt{2}} & 0 \\
1 & 0 & 1 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & -\frac{1}{2} & 0 & -\frac{1}{\sqrt{2}} & 0
\end{array}\right] \in \mathbb{M}_{6}^{0}
$$

Then $\alpha_{3}(A)=1$ and $A^{*} A=2 I$.
Proposition $3.7\left(7 \times 7\right.$ general). $\tilde{\alpha}_{3}\left(\mathbb{M}_{7}^{0}\right) \in[0.8231,1)$.
Proof. The following matrix was discovered by searching among 7×7 unitary circulants for bad pavers. The starting point for the search was a 7×7 unitary circulant with the eigenvalue distribution $\left(1, e^{\pi i / 3}, e^{-\pi i / 3}, i,-i,-1,-1\right)$.

$$
A=\left[\begin{array}{lllllll}
0 & a & b & c & d & e & f \\
f & 0 & a & b & c & d & e \\
e & f & 0 & a & b & c & d \\
d & e & f & 0 & a & b & c \\
c & d & e & f & 0 & a & b \\
b & c & d & e & f & 0 & a \\
a & b & c & d & e & f & 0
\end{array}\right]
$$

where

$$
\begin{aligned}
a & =-0.19104830537481-0.18571483276728 i \\
b & =0.03404378754044+0.00110165928527 i \\
c & =-0.13926357252448+0.42165365488402 i \\
d & =0.21474405201775-0.42217403069332 i \\
e & =-0.28337369310887-0.48101315713848 i \\
f & =0.29151538363540-0.33115367910212 i
\end{aligned}
$$

Then $\alpha_{3}(A)=0.82305627367962$ and $A^{*} A=I$, i.e. $\tilde{\alpha}_{3}(A)=0.82305627367962$.
It remains to show that $\tilde{\alpha}_{3}\left(\mathbb{M}_{7}^{0}\right) \neq 1$. To that end, let $A \in \mathbb{M}_{7}^{0}$, with $\alpha_{3}(A)=1$. If every 3 -compression of A has norm ≥ 1, then $\|A\|>1$ (Corollary 7.10). If, on the other hand, some 3 -compression of A has norm <1, then the complementary 4-compression B satisfies $\alpha_{2}(B) \geq 1$. In particular, every $2-2$ paving of B has norm ≥ 1. By Lemma 7.11 , we may assume that

$$
A=\left[\begin{array}{lllllll}
0 & 0 & 0 & 0 & * & * & * \\
0 & 0 & a & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & b & 0 & 0 & 0 \\
0 & c & 0 & 0 & 0 & 0 & 0 \\
* & 0 & 0 & 0 & 0 & * & * \\
* & 0 & 0 & 0 & * & 0 & * \\
* & 0 & 0 & 0 & * & * & 0
\end{array}\right],
$$

where $|a|=|b|=|c|=1$ and $\left\|A_{567}\right\|<1$. Since $\left\|A_{12}\right\|=\left\|A_{35}\right\|=0,\left\|A_{467}\right\|=1 \Rightarrow$ $\left\|A_{67}\right\|=1 \Rightarrow\left\|A_{567}\right\|=1$, a contradiction.

2. Selfadjoint

Proposition $3.8\left(4 \times 4\right.$ selfadjoint). $\tilde{\alpha}_{3}\left(\mathbb{M}_{4, s a}^{0}\right)=\frac{1}{\sqrt{3}} \approx 0.5773$.
Proof. Suppose $A \in \mathbb{M}_{4, s a}^{0}$, with $\alpha_{3}(A)=1$. Then $\left|a_{i j}\right| \geq 1$ for all $i \neq j$. Thus, $\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$. Now let

$$
A=\left[\begin{array}{cccc}
0 & i & 1 & 1 \\
-i & 0 & 1 & -1 \\
1 & 1 & 0 & i \\
1 & -1 & -i & 0
\end{array}\right] \in \mathbb{M}_{4, s a}^{0}
$$

Then $\tilde{\alpha}_{3}(A)=\frac{1}{\sqrt{3}}\left(\alpha_{3}(A)=1\right.$ and $\left.A^{*} A=3 I\right)$.
Proposition $3.9(5 \times 5$ selfadjoint $) . \tilde{\alpha}_{3}\left(\mathbb{M}_{5, s a}^{0}\right)=\frac{1}{\sqrt{3}}$.
Proof. Clearly,

$$
\tilde{\alpha}_{3}\left(\mathbb{M}_{5, s a}^{0}\right) \geq \tilde{\alpha}_{3}\left(\mathbb{M}_{4, s a}^{0}\right)=\frac{1}{\sqrt{3}}
$$

Now let $A \in \mathbb{M}_{5, s a}^{0}$, with $\alpha_{3}(A)=1$. Construct a graph $G=(V, E)$ as follows: $V=\{1,2,3,4,5\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|<1\left(\Rightarrow\left|a_{j i}\right|<1\right)$. We may assume the following axioms:
(1) $G 11$ is not a subgraph of G. Otherwise, A would have a 1-2-2 paving of norm <1, violating the assumption $\alpha_{3}(A)=1$.
(2) By removing a vertex from G, one cannot arrive at $G 8$. Otherwise, A would have a 4 -compression B such that $\alpha_{3}(B) \geq 1$. Since $\tilde{\alpha}_{3}\left(\mathbb{M}_{4, s a}^{0}\right)=$ $\frac{1}{\sqrt{3}}$, this would imply $\|B\| \geq \sqrt{3} \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$.
(3) For every vertex $i, \operatorname{deg}(i) \geq 2$. Otherwise, if $\operatorname{deg}(i) \leq 1$, then row i of A has at least three entries of magnitude $\geq 1 \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$.
This eliminates all graphs.
Proposition $3.10\left(6 \times 6\right.$ selfadjoint). $\tilde{\alpha}_{3}\left(\mathbb{M}_{6, s a}^{0}\right)=\frac{1}{\sqrt{3}}$.
Proof. Clearly,

$$
\tilde{\alpha}_{3}\left(\mathbb{M}_{6, s a}^{0}\right) \geq \tilde{\alpha}_{3}\left(\mathbb{M}_{5, s a}^{0}\right)=\frac{1}{\sqrt{3}} .
$$

Now let $A \in \mathbb{M}_{6, s a}^{0}$, with $\alpha_{3}(A)=1$. Construct a graph $G=(V, E)$ as follows: $V=\{1,2,3,4,5,6\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|<1\left(\Rightarrow\left|a_{j i}\right|<1\right)$. We may assume the following axioms:
(1) $G 61$ is not a subgraph of G. Otherwise, A would have a 2-2-2 paving of norm <1, violating the assumption $\alpha_{3}(A)=1$.
(2) By removing a vertices from G, one cannot arrive at $G 8$. Otherwise, A would have a 4 -compression B such that $\alpha_{3}(B) \geq 1$. Since $\tilde{\alpha}_{3}\left(\mathbb{M}_{4, s a}^{0}\right)=$ $\frac{1}{\sqrt{3}}$, this would imply $\|B\| \geq \sqrt{3} \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$.
(3) For every vertex $i, \operatorname{deg}(i) \geq 3$. Otherwise, if $\operatorname{deg}(i) \leq 2$, then row i of A has at least three entries of magnitude $\geq 1 \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$.
This eliminates all graphs.

Preliminaries for 7×7 Selfadjoints

Notation: $F=\left[1-\delta_{i j}\right] \in \mathbb{M}_{n, s a}^{0}$ (the "fat" operator)
Lemma 3.11. Let $0 \neq A \in \mathbb{M}_{n, s a}^{0}$. Then the following are equivalent:
i. $\|A\|^{2}=\frac{n-1}{n}\|A\|_{H S}^{2}$.
ii. There exists a nonzero $\alpha \in \mathbb{R}$ such that

$$
\sigma\left(\alpha^{-1} A\right)=(1, \overbrace{-\frac{1}{n-1},-\frac{1}{n-1}, \ldots,-\frac{1}{n-1}}^{n-1}) .
$$

iii. There exists a diagonal unitary $U \in \mathbb{D}_{n}$ and a nonzero $\beta \in \mathbb{R}$ such that

$$
U^{*} A U=\beta F
$$

Proof. (i $\Leftrightarrow \mathrm{ii}):$ We have seen that $\|A\|^{2}=\frac{n-1}{n}\|A\|_{H S}^{2}$ if and only if

$$
\sigma(A)= \pm\|A\|\left(1,-\frac{1}{n-1},-\frac{1}{n-1}, \ldots,-\frac{1}{n-1}\right)
$$

(ii \Leftrightarrow iii): Set $\tilde{A}=\alpha^{-1} A$. If $\sigma(\tilde{A})=\left(1,-\frac{1}{n-1},-\frac{1}{n-1}, \ldots,-\frac{1}{n-1}\right)$, then there exists a unitary $U \in \mathbb{M}_{n}$ such that

$$
\tilde{A}=V\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & -\frac{1}{n-1} & 0 & \ldots & 0 \\
0 & 0 & -\frac{1}{n-1} & \ldots & 0 \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
0 & 0 & 0 & \ldots & -\frac{1}{n-1}
\end{array}\right] V^{*}
$$

Letting v stand for the first column of V, we have that

$$
A=\frac{n}{n-1} v v^{*}-\frac{1}{n-1} I=\left[\frac{n}{n-1} v_{i} \overline{v_{j}}-\frac{1}{n-1} \delta_{i j}\right]
$$

Since $\tilde{A} \in \mathbb{M}_{n, s a}^{0}$,

$$
\frac{n}{n-1}\left|v_{i}\right|^{2}-\frac{1}{n-1}=0 \Rightarrow v_{i}=\frac{1}{\sqrt{n}} e^{i \theta_{i}}
$$

for some $\theta_{i} \in \mathbb{R}$. It follows that

$$
\tilde{A}=\frac{1}{n-1}\left[e^{i\left(\theta_{i}-\theta_{j}\right)}-\delta_{i j}\right]=\frac{1}{n-1} U F U^{*}
$$

where

$$
U=\operatorname{diag}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) \in \mathbb{D}_{n}
$$

Thus, $U^{*} A U=\beta F$, where $\beta=\frac{\alpha}{n-1}$. (iii \Rightarrow ii): Clearly

$$
F=n E-I
$$

where all the off-diagonal entries of $E \in \mathbb{M}_{n}$ equal $\frac{1}{n}$. Since E is a rank-one projection,

$$
\sigma(F)=(n-1,-1,-1, \ldots,-1) .
$$

The result follows.

Lemma 3.12. Let $0 \neq A \in \mathbb{M}_{n, s a}^{0}$. Fix $k \geq 3$ and assume $\|B\|^{2}=\frac{k-1}{k}\|B\|_{H S}^{2}$ for all k-compressions B of A. Then there exists a diagonal unitary $U \in \mathbb{D}_{n}$ and an $\alpha>0$ such that

$$
U^{*} A U=\alpha S
$$

where all the off-diagonal entries of $S \in \mathbb{M}_{n, s a}^{0}$ equal ± 1.
Proof. Let B be a k-compression of A. By Lemma 3.11, all the off-diagonal entries of B have the same modulus. It follows that all the off-diagonal entries of A have the same modulus, say α (here we use $k \geq 3$). Set $C=\alpha^{-1} A$. Then all the off-diagonal entries of C have modulus 1, and $\|B\|^{2}=\frac{k-1}{k}\|B\|_{H S}^{2}$ for all k-compressions B of C. We claim that $c_{r s} c_{s t}= \pm c_{r t}$ for all $r<s<t$. Indeed, this follows from Lemma 3.11 applied to any k-compression B of C containing r, s, and t (again we use $k \geq 3$). Now let $\phi_{1}, \phi_{2}, \ldots, \phi_{n-1} \in \mathbb{R}$ be such that $c_{i, i+1}=e^{i \phi_{i}}$, $i=1,2, \ldots, n-1$. For $j=1,2, \ldots, n$, define $\theta_{j}=-\sum_{i=1}^{j-1} \phi_{i}$. We claim that

$$
c_{r s}= \pm e^{i\left(\theta_{r}-\theta_{s}\right)}, r<s
$$

Indeed,

$$
\begin{aligned}
c_{r s} & = \pm c_{r, r+1} c_{r+1, r+2} \cdot s c_{s-1, s}= \pm e^{i \phi_{r}} e^{i \phi_{r+1}} \cdots e^{i \phi_{s-1}} \\
& = \pm e^{i \sum_{i=r}^{s-1} \phi_{i}}= \pm e^{i\left(\sum_{i=1}^{s-1} \phi_{i}-\sum_{i=1}^{r-1} \phi_{i}\right)}= \pm e^{i\left(\theta_{r}-\theta_{s}\right)} .
\end{aligned}
$$

Setting

$$
U=\operatorname{diag}\left(e^{i \theta_{1}}, e^{i \theta_{2}}, \ldots, e^{i \theta_{n}}\right) \in \mathbb{D}_{n}
$$

we have that $U^{*} C U=S \in \mathbb{M}_{n, s a}^{0}$, where all the off-diagonal entries of S are ± 1.
Proposition $3.13(7 \times 7$ selfadjoint $) . \tilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right) \in\left[\frac{2}{3}, \frac{2}{\sqrt{7}}\right) \approx[0.6667,0.7559)$.
Proof. Let

$$
A=\left[\begin{array}{ccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & -1 & -1 \\
1 & 1 & 0 & -1 & 1 & -1 & -1 \\
1 & 1 & -1 & 0 & -1 & -1 & 1 \\
1 & 1 & 1 & -1 & 0 & 1 & 1 \\
1 & -1 & -1 & -1 & 1 & 0 & 1 \\
1 & -1 & -1 & 1 & 1 & 1 & 0
\end{array}\right] \in \mathbb{M}_{7, s a}^{0}
$$

Then $\tilde{\alpha}_{3}(A)=\frac{2}{3}\left(\alpha_{3}(A)=2\right.$ and $\left.\|A\|=3\right)$. Thus, $\tilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}\right) \geq \frac{2}{3}$. Now let $A \in \mathbb{M}_{7, s a}^{0}$, with $\alpha_{3}(A)=1$.

If every 3 -compression B of selfadjoint A has norm ≥ 1, then $\|B\|_{2}^{2} \geq \frac{3}{2}\|B\|^{2}$ by selfadjointness using Proposition $7.5(p=2, n=3)$.
General identity: $\sum_{B}\|B\|_{H S}^{2}=5\|A\|_{H S}^{2}$ by a counting argument.
From general selfadjoint trace zero inequality for odd rank: $\|A\|_{H S}^{2} \leq 6\|A\|^{2}$ by Corollary $7.4(n=7)$. Thus

$$
35 \leq \sum_{B}\|B\|^{2} \leq \frac{2}{3} \sum_{B}\|B\|_{H S}^{2}=\frac{10}{3}\|A\|_{H S}^{2} \leq 20\|A\|^{2}
$$

and hence $\|A\| \geq \frac{\sqrt{7}}{2} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{2}{\sqrt{7}}$.
That $\|A\| \geq \frac{\sqrt{7}}{2}$ is a special case of Corollary $7.6(n=7, k=3)$, so the above internal proof of this can alternatively be referenced.

If, on the other hand, some 3-compression of A has norm <1, then the complementary 4-compression B satisfies $\alpha_{2}(B) \geq 1$. Since $\tilde{\alpha}_{2}\left(\mathbb{M}_{4, s a}^{0}\right)=\frac{1}{\sqrt{3}},\|B\| \geq \sqrt{3}$ $\Rightarrow\|A\| \geq \sqrt{3} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}<\frac{2}{\sqrt{7}}$.

Now assume $\alpha_{3}(A)=1$ and $\|A\|=\frac{\sqrt{7}}{2}$. By the previous discussion, every 3 -compression B of A has norm ≥ 1. Thus

$$
35 \leq \sum_{B}\|B\|^{2} \leq \frac{2}{3} \sum_{B}\|B\|_{H S}^{2}=\frac{10}{3}\|A\|_{H S}^{2} \leq 20\|A\|^{2}=35
$$

It follows that $\|B\|^{2}=\frac{2}{3}\|B\|_{H S}^{2}$ for all 3-compressions B of A. By Lemma ??, there exists a diagonal unitary $U \in \mathbb{D}_{n}$ and an $\alpha>0$ such that $U^{*} A U=\alpha S$, where all the off-diagonal entries of $S \in \mathbb{M}_{n, s a}^{0}$ are ± 1. Searching exhaustively among all such S, we see that $\tilde{\alpha}_{3}(A) \leq \frac{2}{3}<\frac{2}{\sqrt{7}}$, a contradiction.

Proposition $3.14\left(8 \times 8\right.$ selfadjoint). $\tilde{\alpha}_{3}\left(\mathbb{M}_{8, s a}^{0}\right) \in\left[\frac{2}{3}, \frac{2}{\sqrt{5}}\right] \approx[0.6667,0.8944]$.
Proof. Clearly,

$$
\tilde{\alpha}_{3}\left(\mathbb{M}_{8, s a}^{0}\right) \geq \tilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right) \geq \frac{2}{3}
$$

Now let $A \in \mathbb{M}_{8, s a}^{0}$, with $\alpha_{3}(A)=1$. If every 3 -compression of A has norm ≥ 1, then $\|A\| \geq \frac{\sqrt{7}}{2}$ (by proof of 3.13 every 7 -compression has norm $\geq \frac{\sqrt{7}}{2}$) $\Rightarrow \tilde{\alpha}_{3}(A) \leq$ $\frac{2}{\sqrt{7}}<\frac{2}{\sqrt{5}}$. If, on the other hand, some 3 -compression of A has norm <1, then the complementary 5 -compression B satisfies $\alpha_{2}(B) \geq 1$. Since $\tilde{\alpha}_{2}\left(\mathbb{M}_{5, s a}^{0}\right)=\frac{2}{\sqrt{5}}$, $\|B\| \geq \frac{\sqrt{5}}{2} \Rightarrow\|A\| \geq \frac{\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{2}{\sqrt{5}}$.

Proposition $3.15(10 \times 10$ selfadjoint $) . \quad \tilde{\alpha}_{3}\left(\mathbb{M}_{10, s a}^{0}\right) \in\left[\frac{\sqrt{5}}{3}, 1\right] \approx[0.7454,1]$.
Proof. Let

$$
A=\left[\begin{array}{cccccccccc}
0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 \\
1 & 0 & 1 & 1 & 1 & 1 & -1 & -1 & -1 & -1 \\
1 & 1 & 0 & 1 & -1 & -1 & 1 & 1 & -1 & -1 \\
1 & 1 & 1 & 0 & -1 & -1 & -1 & -1 & 1 & 1 \\
1 & 1 & -1 & -1 & 0 & 1 & 1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1 & 1 & 0 & -1 & 1 & -1 & 1 \\
1 & -1 & 1 & -1 & 1 & -1 & 0 & 1 & 1 & -1 \\
1 & -1 & 1 & -1 & -1 & 1 & 1 & 0 & -1 & 1 \\
1 & -1 & -1 & 1 & 1 & -1 & 1 & -1 & 0 & 1 \\
1 & -1 & -1 & 1 & -1 & 1 & -1 & 1 & 1 & 0
\end{array}\right] \in \mathbb{M}_{10, s a}^{0} .
$$

Then $\tilde{\alpha}_{3}(A)=\frac{\sqrt{5}}{3}\left(\alpha_{3}(A)=\sqrt{5}\right.$ and $\left.A^{*} A=9 I\right)$.
Remark: A is a conference matrix.

3. Nonnegative

Lemma 3.16. Let $A \in \mathbb{M}_{4,++}^{0}$. If $\alpha_{3}(A)=1$ and a row or column of A has three entries ≥ 1, then $\|A\| \geq 2$. This inequality is sharp.

Proof. We may assume the first row of A has three entries ≥ 1. Then

$$
\|A\| \geq\left\|\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 0 & b_{23} & b_{24} \\
0 & b_{32} & 0 & b_{34} \\
0 & b_{42} & b_{43} & 0
\end{array}\right]\right\|
$$

where $\max \left\{b_{i j}, b_{j i}\right\} \geq 1$ for all $i \neq j$. Since

$$
\min \left\{\left\|\left[\begin{array}{cccc}
0 & 1 & 1 & 1 \\
0 & 0 & \delta_{23} & \delta_{24} \\
0 & 1-\delta_{23} & 0 & \delta_{34} \\
0 & 1-\delta_{24} & 1-\delta_{34} & 0
\end{array}\right]\right\|: \delta_{23}, \delta_{24}, \delta_{34} \in\{0,1\}\right\}=2
$$

we have that $\|A\| \geq 2$. A sharp example is furnished by the matrix

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0
\end{array}\right]
$$

Proposition 3.17 (4×4 nonnegative). $\tilde{\alpha}_{3}\left(\mathbb{M}_{4,++}^{0}\right)=\kappa \approx 0.5550$.
Proof. Suppose $A \in \mathbb{M}_{4,++}^{0}$, with $\alpha_{3}(A)=1$. Create a digraph $D=(V, E)$ as follows: $V=\{1,2,3,4\}$ and $(i, j) \in E$ if $a_{i j} \geq 1$. We may assume the following axioms:
(1) For all $i \neq j$, either $(i, j) \in E$ or $(j, i) \in E$. Otherwise, A admits a 1-1-2 paving of norm <1, violating the assumption $\alpha_{3}(A)=1$.
(2) For all vertices i, the in-degree of i and the out-degree of i are less than 3. Otherwise, row i or column i of A has three entries $\geq 1 \Rightarrow\|A\| \geq 2$ $($ Lemma 3.16$) \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{1}{2}<\kappa$.
This leaves digraphs $D 149, D 185, D 186$, and $D 218$, which all have $D 149$ as a subgraph. Thus,

$$
\|A\| \geq\left\|\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\right\|=\frac{1}{\kappa} \Rightarrow \tilde{\alpha}_{3}(A) \leq \kappa
$$

Now let

$$
A=\left[\begin{array}{llll}
0 & 1 & 1 & 0 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]
$$

Then $\tilde{\alpha}_{3}(A)=\kappa \Rightarrow \tilde{\alpha}_{3}\left(\mathbb{M}_{4,++}^{0}\right) \geq \kappa$.

Proposition 3.18 (6×6 nonnegative). $\tilde{\alpha}_{3}\left(\mathbb{M}_{6,++}^{0}\right) \in\left[\kappa, \frac{2}{1+\sqrt{5}}\right] \approx[0.5550,0.6180]$.
Proof. Suppose $A \in \mathbb{M}_{6,++}^{0}$, with $\alpha_{3}(A)=1$. Create a graph $G=(V, E)$ as follows: $V=\{1,2,3,4,5,6\}$ and $(i, j) \in E$ if $a_{i j}, a_{j i}<1$. We may assume the following axioms:
(1) $G 61$ is not a subgraph of G. Otherwise, A has a 2-2-2 paving of norm <1, violating the assumption $\alpha_{3}(A)=1$.
(2) By removing vertices, one cannot arrive at $G 8$. Otherwise, A has a 4 compression B with $\alpha_{3}(B) \geq 1 \Rightarrow\|B\| \geq \frac{1}{\kappa} \Rightarrow\|A\| \geq \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_{3}(A) \leq \kappa$.
(3) G has no isolated vertices. Otherwise, if vertex i is isolated, then either row i or column i of A has at least three entries $\geq 1 \Rightarrow\|A\| \geq \sqrt{3} \Rightarrow$ $\tilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{3}}$.
(4) There does not exist a partition $V=\{i, j, k\} \bigsqcup\left\{i^{\prime}, j^{\prime}, k^{\prime}\right\}$ such that $\left(r, s^{\prime}\right) \notin$ $E, r, s \in\{i, j, k\}$. Otherwise, some 3×3 submatrix of A has at least five entries $\geq 1 \Rightarrow\|A\| \geq \frac{1}{\kappa} \Rightarrow \tilde{\alpha}_{3}(A) \leq \kappa$ (by exhaustive search of 0-1 3×3 matrices with five 1's).
This leaves $G 114$ and $G 133$, both of which have a 5 -compression of the form

$$
\left[\begin{array}{ccccc}
0 & * & * & * & * \\
* & 0 & * & * & * \\
* & * & 0 & \cdot & \cdot \\
* & * & \cdot & 0 & \cdot \\
* & * & \cdot & \cdot & 0
\end{array}\right],
$$

where a "*" in the (i, j) position indicates that $a_{i j} \geq 1$ or $a_{j i} \geq 1$, and a "." in the (i, j) position indicates that $a_{i j}<1$. Searching exhaustively over all 0-1 5×5 matrices satisfying this pattern yields $\|A\| \geq \frac{1+\sqrt{5}}{2} \Rightarrow \tilde{\alpha}_{3}(A) \leq \frac{2}{1+\sqrt{5}}$.

CHAPTER 4

2,3-Pavings Summary Table

\(\left.$$
\begin{array}{|c|c|c|c|c|c|c|}\hline n & \alpha_{2}\left(\mathbb{M}_{n}^{0}\right) & \alpha_{2}\left(\mathbb{M}_{n, s a}^{0}\right) & \alpha_{2}\left(\mathbb{M}_{n, s y m}^{0}\right) & \alpha_{3}\left(\mathbb{M}_{n}^{0}\right) & \alpha_{3}\left(\mathbb{M}_{n, s a}^{0}\right) & \alpha_{3}\left(\mathbb{M}_{n,++}^{0}\right) \\
\hline 3 & 1 & \begin{array}{c}\frac{1}{\sqrt{3}} \\
5\end{array} & \begin{array}{c}\frac{1}{2} \\
.5000\end{array}
$$ \& 0 \& 0 \& 0

\hline 4 \& \prime \prime \& \prime \prime \& {\left[?, \frac{1}{\sqrt{3}}\right]} \& \frac{2}{1+\sqrt{5}} \& \begin{array}{c}\frac{1}{\sqrt{3}}

{[.5493, .5773]}

.6180\end{array} \& .5773\end{array}\right]\)| κ |
| :---: |
| 5 |
| 6 |
| \prime |
| 7 |
| 7 |

Part 2

Supplementary Material and Tools

CHAPTER 5

Supplementary Material: 2-Pavings

CHAPTER 6

Supplementary Material: 3-Pavings

Lemma 6.1. Let $A \in \mathbb{M}_{4}^{0}$. If $\alpha_{3}(A)=1$ and $\|A\|<\sqrt{3}$, then there exists a permutation matrix $U \in \mathbb{M}_{4}$ such that

$$
U^{*} A U=\left[\begin{array}{cccc}
0 & \hat{a} & \hat{b} & \tilde{c} \\
\tilde{a} & 0 & \hat{d} & \hat{e} \\
\tilde{b} & \tilde{d} & 0 & \hat{f} \\
\hat{c} & \tilde{e} & \tilde{f} & 0
\end{array}\right],
$$

where $|\tilde{x}| \leq|\hat{x}|$ for all $x \in\{a, b, c, d, e, f\}$. The result remains true if $A \gg 0$ and $\|A\|<2$.

Proof. Let

$$
A=\left[\begin{array}{cccc}
0 & a_{12} & a_{13} & a_{14} \\
a_{21} & 0 & a_{23} & a_{24} \\
a_{31} & a_{32} & 0 & a_{34} \\
a_{41} & a_{42} & a_{43} & 0
\end{array}\right] .
$$

The condition $\alpha_{3}(A)=1$ implies that $\max \left\{\left|a_{i j}\right|,\left|a_{j i}\right|\right\} \geq 1$ for all $i<j$. The condition $\|A\|<\sqrt{3}$ (resp. $A \gg 0$ and $\|A\|<2$) ensures that each row and each column has at most two entries of magnitude greater than or equal to 1 (see Lemma 6.1). Conjugating by $U_{(12)}$, if necessary, we may assume that $\left|a_{12}\right| \geq\left|a_{21}\right|$, which we indicate as follows:

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & a_{13} & a_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
a_{31} & a_{32} & 0 & a_{34} \\
a_{41} & a_{42} & a_{43} & 0
\end{array}\right] .
$$

Case 1: Suppose $\left|a_{13}\right| \geq\left|a_{31}\right|$. Then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \hat{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
\tilde{a}_{31} & a_{32} & 0 & a_{34} \\
\hat{a}_{41} & a_{42} & a_{43} & 0
\end{array}\right] .
$$

Conjugating by $U_{(23)}$, if necessary, we may assume that $\left|a_{23}\right| \geq\left|a_{32}\right|$. Then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \hat{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & \hat{a}_{23} & a_{24} \\
\tilde{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\
\hat{a}_{41} & a_{42} & \tilde{a}_{43} & 0
\end{array}\right] .
$$

If $\left|a_{24}\right| \geq\left|a_{42}\right|$, then we are done. Thus, we may assume the opposite. That is,

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \hat{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & \hat{a}_{23} & \tilde{a}_{24} \\
\tilde{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\
\hat{a}_{41} & \hat{a}_{42} & \tilde{a}_{43} & 0
\end{array}\right]
$$

Conjugating by $U=U_{(1432)}$ yields

$$
U^{*} A U=\left[\begin{array}{cccc}
0 & \hat{a}_{41} & \hat{a}_{42} & \tilde{a}_{43} \\
\tilde{a}_{14} & 0 & \hat{a}_{12} & \hat{a}_{13} \\
\tilde{a}_{24} & \tilde{a}_{21} & 0 & \hat{a}_{23} \\
\hat{a}_{34} & \tilde{a}_{31} & \tilde{a}_{32} & 0
\end{array}\right]
$$

Case 2: Suppose $\left|a_{13}\right|<\left|a_{31}\right|$. Then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \tilde{a}_{13} & a_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
\hat{a}_{31} & a_{32} & 0 & a_{34} \\
a_{41} & a_{42} & a_{43} & 0
\end{array}\right]
$$

Case 2.1: If $\left|a_{14}\right| \geq\left|a_{41}\right|$, then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \tilde{a}_{13} & \hat{a}_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
\hat{a}_{31} & a_{32} & 0 & a_{34} \\
\tilde{a}_{41} & a_{42} & a_{43} & 0
\end{array}\right]
$$

Conjugating by $U_{(34)}$ yields

$$
U_{(34)}^{*} A U_{(34)}=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \hat{a}_{14} & \tilde{a}_{13} \\
\tilde{a}_{21} & 0 & a_{24} & a_{23} \\
\tilde{a}_{41} & a_{42} & 0 & a_{43} \\
\hat{a}_{31} & a_{32} & a_{34} & 0
\end{array}\right]
$$

and we may proceed as in Case 1.
Case 2.2: If $\left|a_{14}\right|<\left|a_{41}\right|$, then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & a_{23} & a_{24} \\
\hat{a}_{31} & a_{32} & 0 & a_{34} \\
\hat{a}_{41} & a_{42} & a_{43} & 0
\end{array}\right]
$$

Conjugating by $U_{(34)}$ if necessary, we may assume that $\left|a_{34}\right| \geq\left|a_{43}\right|$. Then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & \hat{a}_{23} & a_{24} \\
\hat{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\
\hat{a}_{41} & a_{42} & \tilde{a}_{43} & 0
\end{array}\right]
$$

Case 2.2.1: If $\left|a_{24}\right| \geq\left|a_{42}\right|$, then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & \hat{a}_{23} & \hat{a}_{24} \\
\hat{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\
\hat{a}_{41} & \tilde{a}_{42} & \tilde{a}_{43} & 0
\end{array}\right]
$$

Conjugating by $U=U_{(1234)}$ yields

$$
U^{*} A U=\left[\begin{array}{cccc}
0 & \hat{a}_{23} & \hat{a}_{24} & \tilde{a}_{21} \\
\tilde{a}_{32} & 0 & \hat{a}_{34} & \hat{a}_{31} \\
\tilde{a}_{42} & \tilde{a}_{43} & 0 & \hat{a}_{41} \\
\hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} & 0
\end{array}\right] .
$$

Case 2.2.2: If $\left|a_{24}\right|<\left|a_{42}\right|$, then

$$
A=\left[\begin{array}{cccc}
0 & \hat{a}_{12} & \tilde{a}_{13} & \tilde{a}_{14} \\
\tilde{a}_{21} & 0 & \hat{a}_{23} & \tilde{a}_{24} \\
\hat{a}_{31} & \tilde{a}_{32} & 0 & \hat{a}_{34} \\
\hat{a}_{41} & \hat{a}_{42} & \tilde{a}_{43} & 0
\end{array}\right] .
$$

Conjugating by $U=U_{(13)(24)}$ yields

$$
U^{*} A U=\left[\begin{array}{cccc}
0 & \hat{a}_{34} & \hat{a}_{31} & \tilde{a}_{32} \\
\tilde{a}_{43} & 0 & \hat{a}_{41} & \hat{a}_{42} \\
\tilde{a}_{13} & \tilde{a}_{14} & 0 & \hat{a}_{12} \\
\hat{a}_{23} & \tilde{a}_{24} & \tilde{a}_{21} & 0
\end{array}\right]
$$

D149: breadth-first labeling 2134

$$
\left[\begin{array}{cccc}
0 & * & * & \cdot \\
\cdot & 0 & * & * \\
\cdot & \cdot & 0 & * \\
* & \cdot & \cdot & 0
\end{array}\right]
$$

D185: breadth-first labeling 2341

$$
\begin{gathered}
{\left[\left[\begin{array}{cccc}
0 & * & * & \cdot \\
\cdot & 0 & * & * \\
\cdot & * & 0 & * \\
* & \cdot & \cdot & 0
\end{array}\right]\right.} \\
\inf \left\{\left\|\left[\begin{array}{ll|l|}
0 & \hline 1 & \cdot 1 \\
\cdot & \cdot 0 \\
\cdot & \frac{1}{2} & 1 \\
\cdot & 1 & 0 \\
1 & \cdot & \cdot \\
0
\end{array}\right]\right\|\right\}=\left\|\left[\begin{array}{cccc}
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 1 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right]\right\|=\sqrt{3} \approx 1.7321
\end{gathered}
$$

REMARK 6.2. Although this example doesn't satisfy the hypotheses of Lemma 6.1, it satisfies the conclusion. Also, the extreme example doesn't satisfy the graph theory, since $|\cdot|<1$.

D186: breadth-first labeling 3124

$$
\left[\begin{array}{cccc}
0 & * & * & \cdot \\
\cdot & 0 & * & * \\
* & \cdot & 0 & * \\
* & \cdot & \cdot & 0
\end{array}\right]
$$

$$
\inf \left\{\left\|\left[\begin{array}{cccc}
0 & 1 & 1 & \cdot \\
\cdot & 0 & 1 & 1 \\
1 & \cdot & 0 & 1 \\
1 & \cdot & \cdot & 0
\end{array}\right]\right\|\right\}=\left\|\left[\begin{array}{cccc}
0 & 1 & 1 & -1 / 2 \\
-1 / 2 & 0 & 1 & 1 \\
1 & 0 & 0 & 1 \\
1 & 1 / 2 & 0 & 0
\end{array}\right]\right\|=\frac{\sqrt{11}}{2} \approx 1.6583
$$

D218: breadth-first labeling 3124

$$
\begin{aligned}
& \inf \left\{\|\left[\begin{array}{cccc}
0 & * & * & \cdot \\
\cdot & 0 & * & * \\
* & \cdot & 0 & * \\
* & * & \cdot & 0
\end{array}\right]\right. \\
& \left.\cdot\left[\begin{array}{cccc}
0 & 1 & 1 & \cdot \\
1 & \cdot & 0 & 1 \\
1 & 1 & \cdot & 0
\end{array}\right] \|\right\}=\left\|\left[\begin{array}{cccc}
0 & 1 & 1 & -1 / 3 \\
-1 / 3 & 0 & 1 & 1 \\
1 & -1 / 3 & 0 & 1 \\
1 & 1 & -1 / 3 & 0
\end{array}\right]\right\|=\frac{5}{3} \approx 1.6667
\end{aligned}
$$

Remark 6.3. Notice that this is a circulant. Best among circulants?

CHAPTER 7

Tools

1. Universal Selfadjoint 3-Identity and consequences

Lemma 7.1 (Universal Selfadjoint 3-Identity). Arbitrary 3×3 selfadjoint trace zero matrices S satisfy:

$$
\frac{\|S\|_{2}^{2}}{2\|S\|^{2}}+\frac{\mid \text { Det } S \mid}{\|S\|^{3}}=1
$$

Proof. Since all trace zero finite (or trace class) matrices have a basis in which their representation has zero diagonal, without loss of generality we can assume S has the form:

$$
S=\left(\begin{array}{ccc}
0 & a & b \\
\bar{a} & 0 & c \\
\bar{b} & \bar{c} & 0
\end{array}\right)
$$

and by computation, the characteristic polynomial:

$$
\begin{aligned}
c_{\lambda}(S)=\operatorname{det}(\lambda-S) & =\lambda^{3}-2 \operatorname{Re} \bar{a} b \bar{c}-\lambda\left(|a|^{2}+|b|^{2}+|c|^{2}\right) \\
& =\lambda^{3}-\left(|a|^{2}+|b|^{2}+|c|^{2}\right) \lambda-2 \operatorname{Re} a \bar{b} c \\
& =\lambda^{3}-\frac{\|\left. S\right|_{2} ^{2}}{2} \lambda-\operatorname{Det} S .
\end{aligned}
$$

An alternative way to see this is that the characteristic polynomial has the form $\lambda^{3}+p \lambda^{2}+q \lambda+r$, with $p=0$ because the sum of the roots is the trace of S, the latter also implying

$$
q=\lambda_{1} \lambda_{2}+\lambda_{1} \lambda_{3}+\lambda_{2} \lambda_{3}=\frac{1}{2}\left(\left(\lambda_{1}+\lambda_{2}+\lambda_{3}\right)^{2}-\left(\lambda_{1}^{2}+\lambda_{2}^{2}+\lambda_{3}^{2}\right)\right)=\frac{-\|S\|_{2}^{2}}{2}
$$

where $\lambda_{j}, j=1,2,3$ denotes its roots, and $r=-\lambda_{1} \lambda_{2} \lambda_{3}=-\operatorname{det} S$.
Since S is selfadjoint, $\lambda= \pm\|S\|$ is an eigenvalue of S. Also, because this is the largest eigenvalue in modulus and S has trace zero, the other two real eigenvalues are opposite this in sign making their product, Det S, the same sign as λ. Hence $(\pm \| S| |)^{3}=\frac{\|S\|_{2}^{2}}{2}(\pm\|S\|)+(\pm|\operatorname{Det} S|)$, whence the Universal Selfadjoint 3-Identity in either case.

Corollary 7.2 (Universal Selfadjoint 3-Identity consequences). For arbitrary 3×3 selfadjoint trace zero matrices S,

$$
\|S\|=1 \Leftrightarrow \frac{\|S\|_{2}^{2}}{2}+|\operatorname{Det} S|=1 .
$$

For greater or less than 1, the respective conditions are equivalent. A necessary condition for equality is $3 / 2 \leq\|S\|_{2}^{2} \leq 2$.

Proof. The Universal Selfadjoint 3-Identity, $\frac{\|S\|_{2}^{2}}{2\|S\|^{2}}+\frac{|D e t S|}{\|S\|^{3}}=1$, implies that if $\|S\|>1$ then $\frac{\|S\|_{2}^{2}}{2}+|\operatorname{Det} S|>1$, and likewise, if $\|S\|<1$ then $\frac{\|S\|_{2}^{2}}{2}+|\operatorname{Det} S|<1$. Therefore $\|S\|=1$ if and only if $\frac{\|S\|_{2}^{2}}{2}+|\operatorname{Det} S|=1$.

Moreover, if $\frac{\|S\|_{2}^{2}}{2}+|\operatorname{Det} S|=1$, then $\|S\|_{2}^{2} \leq 2$. Also in this case when $\|S\|=1$, $\|S\|_{2}^{2} \geq \frac{3}{2}\|S\|^{2}=\frac{3}{2}$ is the $n=3, p=2$ case of Proposition 7.5.

2. Universal Selfadjoint 4-Identity and consequences

Universal Selfadjoint 4-Identity (for 4×4 selfadjoint zero-trace):

$$
\frac{\|S\|_{2}^{2}}{2\|S\|^{2}}+\frac{\left|\operatorname{Tr} S^{3}\right|}{3\|S\|^{3}}-\frac{\operatorname{Det} S}{\|S\|^{4}}=1
$$

Unpolished and unverified work (for proofs see file UniversalIdentities.Tex):
Consequence: Since $\frac{|\operatorname{Det} S|}{\|S\|^{4}} \leq 1$

$$
\frac{\|S\|_{2}^{2}}{2\|S\|^{2}}+\frac{\left|T r S^{3}\right|}{3\|S\|^{3}} \leq 2
$$

Separate Fact $\left(\|S\|_{2}^{2} \geq \frac{n}{n-1}\|S\|^{2}\right):\|S\|_{2}^{2} \geq \frac{4}{3}\|S\|^{2}$ so $\frac{\|S\|_{2}^{2}}{2\|S\|^{2}} \geq \frac{2}{3}$
Implying: $\frac{\left|T r S^{3}\right|}{3||S||^{3}} \leq \frac{4}{3}$
(Trivially also follows generally from Hölder: $\left|\operatorname{Tr} S^{3}\right|^{1 / 3} \leq\|S\|_{3} \leq 4^{1 / 3}| | S| |$)
Development of Universal Selfadjoint 4-Identity:

Let S denote a 4×4 selfadjoint zero-trace matrix with eigenvalues

$$
1=\lambda_{1} \geq\left|\lambda_{2}\right| \geq\left|\lambda_{3}\right| \geq\left|\lambda_{4}\right|
$$

$c_{\lambda}(S)=\left(\lambda-\lambda_{1}\right)\left(\lambda-\lambda_{2}\right)\left(\lambda-\lambda_{3}\right)\left(\lambda-\lambda_{4}\right)$
$=\lambda^{4}-\left(\lambda_{1}+\lambda_{2}+\lambda_{3}+\lambda_{4}\right) \lambda^{3}+\left(\sum_{i<j} \lambda_{i} \lambda_{j}\right) \lambda^{2}-\left(\sum_{i<j<k} \lambda_{i} \lambda_{j} \lambda_{j}\right) \lambda+\lambda_{1} \lambda_{2} \lambda_{3} \lambda_{4}$
$=\lambda^{4}+p \lambda^{2}-q \lambda+r$
SUMMARY: NASC for $\|S\|=1$ (unverified)

1. $p \geq \frac{2}{3} \quad$ 2. $p+|q|+r=1$
2. $0 \leq p+|q| \leq 2$ (equivalent to \mid product of roots $\mid \leq 1$)
3. When $\left.p<1, \frac{20}{27}-\frac{2}{3} p-\frac{2}{27}(3 p-2)^{3 / 2}\right) \leq q \leq \frac{20}{27}-\frac{2}{3} p+\frac{2}{27}(3 p-2)^{3 / 2}$.
4. When $p \geq 1,0 \leq q \leq \frac{20}{27}-\frac{2}{3} p+\frac{2}{27}(3 p-2)^{3 / 2}$.
$\left(4-5: \max \left(0, \frac{20}{27}-\frac{2}{3} p-\frac{2}{27}(3 p-2)^{3 / 2}\right) \leq q \leq \frac{20}{27}-\frac{2}{3} p+\frac{2}{27}(3 p-2)^{3 / 2}\right)$

3. Operator Norm/p-Norm Comparisons

Proposition 7.3 (Operator Norm/p-Norm). If A is a finite rank selfadjoint trace 0 matrix and

$$
k=\mid \# \text { strictly positive eigenvalues }-\# \text { strictly negative eigenvalues } \mid,
$$

then for $p \geq 1$,

$$
\|A\|_{p} \leq(\operatorname{rank} A-k)^{1 / p}\|A\|
$$

(Sharp example: $\operatorname{diag}(-1,1)$)
(Sharp asymptotically: $\operatorname{diag}\left(\pm 1, \ldots, \pm 1\left(\frac{\operatorname{rank} A-k-2}{2}\right.\right.$ pairs of them) $\left., 1,-\frac{k}{k+1},-\frac{1}{k(k+1)}, \ldots,-\frac{1}{k(k+1)}\right)$; note: rank $A-k$ must be even)

Proof. Easy proof for $p \geq 2$ based on the $p=2$ case: If $\left\langle\lambda_{j}\right\rangle$ are the (real) eigenvalues of A, then
$\sum_{1}^{n}\left|\lambda_{j}\right|^{p}=\sum_{1}^{n}\left|\lambda_{j}\right|^{p-2}\left|\lambda_{j}\right|^{2} \leq\left|\lambda_{1}\right|^{p-2} \sum_{1}^{n}\left|\lambda_{j}\right|^{2} \leq\left|\lambda_{1}\right|^{p-2}(n-k)\left|\lambda_{1}\right|^{2}=(n-k)\left|\lambda_{1}\right|^{p}$.
For all $p \geq 1$, we describe informally the following variational approach:
Maximize $\sum\left|\lambda_{j}\right|^{p}$ subject to $\lambda_{1}+\cdots+\lambda_{n}=0$.
Without loss of generality, $A \neq 0,\|A\| \leq 1$ and $\operatorname{tr} A \neq 0$ implies that for some $n>m \geq 1$ the eigenvalues of A have the $[-1,1]$ distribution:

$$
-1 \leq \lambda_{n} \leq \cdots \leq \lambda_{m+1}<0<\lambda_{m} \leq \cdots \leq \lambda_{1} \leq 1
$$

We induct on $n-k$. Since $A \neq 0, n-k>0$ and is even and so $n-k \geq 2$.
Increase λ_{1} and decrease λ_{n} equally so to preserve the trace, until one of them reaches 1 or -1 , respectively. (Increasing both moduli increases the sum $\sum\left|\lambda_{j}\right|^{p}$ and so permits reduction of the proof to this case.) If they both reach 1 or -1 , then dropping them leaves k invariant and reduces to the $n-k-2$ case.

If now $\lambda_{1}=1$ and $\lambda_{n}>-1$ (handle the reverse case the same), decrease λ_{n} and increase λ_{n-1} equally to preserve their sum. Elementary calculus shows that this will increase $\left|\lambda_{n}\right|^{p}+\left|\lambda_{n-1}\right|^{p}$. Continue this until either λ_{n} reaches -1 or λ_{n-1} reaches λ_{n-2}. If the former, then drop λ_{n} and λ_{1}, and again apply the induction hypothesis. If the latter, then decrease both until λ_{n} reaches -1 or both λ_{n-1} and λ_{n-2} reaches λ_{n-3}, and so on. This process will increase $\sum\left|\lambda_{j}\right|^{p}$ and unless $m=1$, one has $m>1$ or equivalently, $\lambda_{n}+\cdots+\lambda_{m+1}<-1$ implying that eventually in this process λ_{n} will reach -1 so we can apply again the induction hypothesis while preserving k. If $m=1$, then this process ends in one pair of ± 1 with sum 2 so $\sum_{1}^{n}\left|\lambda_{j}\right|^{p} \leq 2 \leq n-k$.

Corollary 7.4. If A is an $n \times n$ selfadjoint trace 0 matrix with n odd, then $\|A\|_{2} \leq \sqrt{n-1}\|A\|$.

Proposition 7.5. If A is an $n \times n$ selfadjoint trace 0 matrix and $p \geq 1$ (or more generally rank $A=n$), then

$$
\|A\|_{p} \geq\left[1+\frac{1}{(n-1)^{p-1}}\right]^{1 / p}\|A\|
$$

with equality iff $A=c \operatorname{diag}\left(-1, \frac{1}{n-1}, \ldots, \frac{1}{n-1}\right)$.
Proof. Suffices to show the sequence analog for $\lambda_{1}+\cdots+\lambda_{n}=0$, all λ_{j} real. Since the inequality is obvious for $p=1$, needing selfadjoint with trace 0 to see it, we can assume without loss of generality that $p>1$. Then

$$
\left|\lambda_{1}\right|=\left|-\sum_{2}^{n} \lambda_{j}\right| \leq\|\mathbf{1}\|_{p^{\prime}}| | \lambda \|_{p}
$$

where $\lambda:=<\lambda_{j}>_{2 \leq j \leq n}, \mathbf{1}:=<1>_{2 \leq j \leq n}$, and $\frac{1}{p}+\frac{1}{p^{\prime}}=1$, i.e., $\frac{p}{p^{\prime}}=p-1$. Equality holds if and only if λ is a constant multiple of $\mathbf{1}$. (This is the p-case for Cauchy-Schwartz equality which I presume holds true for $p \neq 2$ like it does for $p=2$-except I don't know a reference.) So

$$
\left|\lambda_{1}\right|^{p} \leq(n-1)^{p / p^{\prime}} \sum_{2}^{n}\left|\lambda_{j}\right|^{p}=(n-1)^{p-1} \sum_{2}^{n}\left|\lambda_{j}\right|^{p} .
$$

Adding $(n-1)^{p-1}\left|\lambda_{1}\right|^{p}$ to both sides yields: $\left[1+(n-1)^{p-1}\right]\|A\|^{p} \leq(n-1)^{p-1}\|A\|_{p}^{p}$, from which (iii) follows. The case for equality also follows from the previous comment about equality.

Corollary 7.6. If every k-compression of $A \in \mathbb{M}_{n, s a}^{0}$ has norm ≥ 1, then

$$
\|A\| \geq \begin{cases}\frac{\sqrt{n-1}}{k-1} & n \text { even } \\ \frac{\sqrt{n}}{k-1} & n \text { odd }\end{cases}
$$

Proof. Denote by Π_{k} the set of all k-compressions of A.
Then $\|B\|^{2} \leq \frac{k-1}{k}\|B\|_{2}^{2}$ for all $B \in \Pi_{k}$ by Proposition $7.5(p=2 \&$ take n to be $k)$.
Then
$\binom{n}{k} \leq \sum_{B \in \Pi_{k}}\|B\|^{2} \leq \frac{k-1}{k} \sum_{B \in \Pi_{k}}\|B\|_{H S}^{2}=\frac{k-1}{k}\binom{n-2}{k-2}\|A\|_{H S}^{2} \leq(n$ or $n-1) \frac{k-1}{k}\binom{n-2}{k-2}\|A\|^{2}$.
Thus,

$$
\|A\|^{2} \geq \frac{\binom{n}{k}}{(n \text { or } n-1) \frac{k-1}{k}\binom{n-2}{k-2}}=\frac{\sqrt{n-1}}{k-1} \text { or } \frac{\sqrt{n}}{k-1} .
$$

Corollary 7.7. If $\widetilde{\alpha}_{2}\left(\mathbb{M}_{n-k, s a}^{0}\right)<\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)$ and
$\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0} \cap\{\right.$ all zero-diagonals with ± 1 off diagonal entries $\left.\}\right)<\left\{\begin{array}{ll}\frac{k-1}{\sqrt{n-1}} & n \text { even } \\ \frac{k-1}{\sqrt{n}} & n \text { odd }\end{array}\right.$, then

$$
\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)< \begin{cases}\frac{k-1}{\sqrt{n-1}} & n \text { even } \\ \frac{k-1}{\sqrt{n}} & n \text { odd }\end{cases}
$$

Proof. Fix an extremal $A=A_{n}$, that is, $\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)=\frac{\alpha_{3}(A)}{\|A\|}$ and without loss of generality assume $\alpha_{3}(A)=1$ and $\|A\|=\frac{1}{\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)}$.

Either $\|B\|<1$ for some k-compression or every k-compression B of A has norm ≥ 1.

Assume first $\|B\|<1$ for some k-compression $B=P A P$. Because $\alpha_{3}(A)=1$, every 3-paving has norm ≥ 1 and by definition, $\widetilde{\alpha}_{2}\left(\mathbb{M}_{n-k, s a}^{0}\right) \geq \frac{\alpha_{2}((I-P) A(I-P))}{\|(I-P) A(I-P)\|}$ so $\|(I-P) A(I-P)\| \geq \frac{\alpha_{2}((I-P) A(I-P))}{\tilde{\alpha}_{2}\left(\mathbb{M}_{n-k, s a}^{0}\right)}$. So if additionally $\|B\|<1$ and $\alpha_{3}(A)=1$, then $\alpha_{2}((I-P) A(I-P))=1$ so all 2-pavings of $(I-P) A(I-P)$ have norm ≥ 1, in which case

$$
\|A\| \geq\|(I-P) A(I-P)\| \geq \frac{1}{\widetilde{\alpha}_{2}\left(\mathbb{M}_{n-k, s a}^{0}\right)}>\frac{1}{\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)}
$$

(the last $>$ by hypothesis), contradicting $\widetilde{\alpha}_{3}\left(\mathbb{M}_{n, s a}^{0}\right)=\frac{\alpha_{3}(A)}{\|A\|}=\frac{1}{\|A\|}$.
On the other hand, if every k-compression B of A has norm ≥ 1, then the displayed inequality in Corollary 7.6 becomes equality throughout:

$$
\binom{n}{k}=\sum_{B \in \Pi_{k}}\|B\|^{2} \leq \frac{k-1}{k} \sum_{B \in \Pi_{k}}\|B\|_{H S}^{2}=\frac{k-1}{k}\binom{n-2}{k-2}\|A\|_{H S}^{2}=(n \text { or } n-1) \frac{k-1}{k}\binom{n-2}{k-2}\|A\|^{2} .
$$

So each $\|B\|^{2}=\frac{k-1}{k}\|B\|_{H S}^{2}$. Now apply Lemma 3.12 so that

$$
A \equiv S \in \mathbb{M}_{n, s a}^{0} \cap\{\text { all zero-diagonals with } \pm 1 \text { off diagonal entries }
$$

and apply the hypothesis to S to contradict the extremality of A.

4. Operator Norm/Hilbert-Schmidt Norm Comparisons

Lemma 7.8. Let $A \in \mathbb{M}_{n}$. Then

$$
\|A\| \leq\|A\|_{H S} \leq \sqrt{n}\|A\|
$$

Furthermore,
i. $\|A\|=\|A\|_{H S}$ if and only if $\operatorname{rank}(A) \leq 1$.
ii. $\|A\|_{H S}=\sqrt{n}\|A\|$ if and only if A is a scalar multiple of a unitary.

Proof. The inequalities are well-known and easy to prove. Now let

$$
A=U \Sigma V^{*}
$$

be a singular value decomposition of A (i.e. U, V are unitary and $\Sigma=\operatorname{diag}\left(\sigma_{1}, \sigma_{2}, \ldots, \sigma_{n}\right)$, where $\left.\sigma_{1} \geq \sigma_{2} \geq \ldots \geq \sigma_{n} \geq 0\right)$. Assume $\|A\|=\|A\|_{H S}$. Then

$$
\sigma_{1}^{2}=\|A\|^{2}=\|A\|_{H S}^{2}=\sum_{i=1}^{n} \sigma_{i}^{2} \Rightarrow \sigma_{2}=\sigma_{3}=\ldots=\sigma_{n}=0
$$

Thus, $A=\sigma_{1} u_{1} v_{1}^{*}$, where u_{1} and v_{1} are the first columns of U and V, respectively. Hence, $\operatorname{rank}(A) \leq 1$. Conversely, if $\operatorname{rank}(A) \leq 1$, then

$$
\sigma_{2}=\sigma_{3}=\ldots=\sigma_{n}=0 \Rightarrow\|A\|=\|A\|_{H S}
$$

Now assume $\|A\|_{H S}=\sqrt{n}\|A\|$. Then

$$
\sum_{i=1}^{n} \sigma_{i}^{2}=\|A\|_{H S}^{2}=n\|A\|^{2}=n \sigma_{1}^{2} \Rightarrow \sigma_{1}=\sigma_{2}=\ldots=\sigma_{n}
$$

Thus, $A=\sigma_{1} U V^{*}$, which is a scalar multiple of a unitary. Conversely, if $A=\alpha W$, where $\alpha \in \mathbb{C}$ and W is a unitary, then

$$
\|A\|_{H S}^{2}=\operatorname{Tr}\left(A^{*} A\right)=|\alpha|^{2} \operatorname{Tr}\left(W^{*} W\right)=|\alpha|^{2} \operatorname{Tr}(I)=n|\alpha|^{2}=n\|A\|^{2}
$$

Corollary 7.9. If every 3-compression of $A \in \mathbb{M}_{7}^{0}$ has norm ≥ 1, then

$$
\|A\| \geq \sqrt{\frac{n-1}{k(k-1)}}
$$

Equality occurs if and only if A is a multiple of a unitary and every k-compression of A has rank one.

Proof. Denote by Π_{k} the set of all k-compressions of A. Then

$$
\binom{n}{k} \leq \sum_{B \in \Pi_{k}}\|B\|^{2} \leq \sum_{B \in \Pi_{k}}\|B\|_{H S}^{2}=\binom{n-2}{k-2}\|A\|_{H S}^{2} \leq n\binom{n-2}{k-2}\|A\|^{2}
$$

Thus,

$$
\|A\|^{2} \geq \frac{\binom{n}{k}}{n\binom{n-2}{k-2}}=\frac{n-1}{k(k-1)}
$$

The stated equality condition follows immediately from Lemma 7.8.
Corollary 7.10. If every 3-compression of $A \in \mathbb{M}_{7}^{0}$ has norm ≥ 1, then $\|A\|>1$.

Proof. By Lemma 7.9,

$$
\|A\|^{2} \geq \frac{7-1}{3(3-1)}=1
$$

Suppose $\|A\|=1$. Again by Lemma $7.9, A$ is unitary and every 3 -compression of A has rank one. It follows that every 3 -compression of A has exactly two zero columns or exactly two zero rows. Consider A_{123}, the $\{1,2,3\}$-compression of A. Without loss of generality, we may assume that the second and third columns of A_{123} are zero. It follows that the first column of A_{123} has norm 1. Thus,

$$
A=\left[\begin{array}{ccccccc}
0 & 0 & 0 & * & * & * & * \\
a_{21} & 0 & 0 & * & * & * & * \\
a_{31} & 0 & 0 & * & * & * & * \\
0 & * & * & 0 & * & * & * \\
0 & * & * & * & 0 & * & * \\
0 & * & * & * & * & 0 & * \\
0 & * & * & * & * & * & 0
\end{array}\right]
$$

where $\left|a_{21}\right|^{2}+\left|a_{31}\right|^{2}=1$. Conjugating by $U_{(23)}$, if necessary, we may assume that $a_{21} \neq 0$. Case 1: Suppose $\left|a_{21}\right|=1$. By considering, in order, $A_{123}, A_{124}, A_{125}$, A_{126}, and A_{127}, we have that

$$
A=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & * & * & * & * \\
0 & 0 & * & 0 & * & * & * \\
0 & 0 & * & * & 0 & * & * \\
0 & 0 & * & * & * & 0 & * \\
0 & 0 & * & * & * & * & 0
\end{array}\right] .
$$

Considering A_{234}, we have that either $\left|a_{34}\right|=1$ or $\left|a_{43}\right|=1$. Conjugating by $U_{(34)}$, if necessary, we may assume the former. Considering, in order, $A_{234}, A_{345}, A_{346}$, and A_{347}, we have that

$$
A=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
a_{21} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & a_{34} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * & * \\
0 & 0 & 0 & 0 & * & 0 & * \\
0 & 0 & 0 & 0 & * & * & 0
\end{array}\right] .
$$

But then $\left\|A_{235}\right\|=0$, a contradiction.
Case 2: Suppose $\left|a_{21}\right|<1$. By considering, in order, A_{124}, A_{234}, and A_{345}, we have that

$$
A=\left[\begin{array}{ccccccc}
0 & 0 & 0 & 0 & * & * & * \\
a_{21} & 0 & 0 & a_{24} & 0 & 0 & 0 \\
a_{31} & 0 & 0 & a_{34} & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & * & * \\
0 & * & 0 & 0 & 0 & * & * \\
0 & * & * & 0 & * & 0 & * \\
0 & * & * & 0 & * & * & 0
\end{array}\right],
$$

where $\left|a_{21}\right|^{2}+\left|a_{24}\right|^{2}=1$ and $\left|a_{24}\right|^{2}+\left|a_{34}\right|^{2}=1$. But then $\left\|A_{345}\right\|<1$, a contradiction.

Lemma 7.11. Let $A \in \mathbb{M}_{4}^{0}$. If every 2-2 paving of A has norm ≥ 1, then either $\|A\|>1$ or, up to permutation,

$$
A=\left[\begin{array}{llll}
0 & 0 & 0 & 0 \\
0 & 0 & a & 0 \\
0 & 0 & 0 & b \\
0 & c & 0 & 0
\end{array}\right]
$$

where $|a|=|b|=|c|=1$.
Proof. Assume $\|A\|=1$. Create a graph $G=(V, E)$ as follows: $V=$ $\{1,2,3,4\}$ and $(i, j) \in E$ if $\left|a_{i j}\right|,\left|a_{j i}\right|<1$. We may assume the following axioms:
(1) $G 11$ is not a subgraph of G. Otherwise, A has a 2-2 paving of norm <1.
(2) For all $i, \operatorname{deg}(i)>0$. Otherwise, either row i or column i of A has at least two entries of modulus $\geq 1 \Rightarrow\|A\| \geq \sqrt{2}$.
This leaves $G 13$, which proves the result.

5. Averaging and Constrained Averaging

Let $A^{*}=A=\left(a_{i j}\right), E(A)=0$, with the reduction assumption for $\mathbb{M}_{7, s a}^{0}$ that the B 's range over all the 3×3 zero-diagonal matrices with norm at least 1 (in which case each Hilbert-Schmidt norm is at least $\frac{3}{2}$) or in the case of constrained averaging, all the B 's with diagonal projection not containing prescribed i, j pairs.

The following weighted formulas for the Hilbert-Schmidt norm of a 7×7 zerodiagonal selfadjoint matrix in terms of the Hilbert-Schmidt norms of some or all of its 3-diagonal compressions $P A P$ for averaging and constrained averaging are obtained by careful groupings of triplet integer subsets of $[1,7]$ to compensate for overcounting due to multiple occurrences, analogous to the elementary counting formula for finite sets: $|A \cup B|=|A|+|B|-|A \cap B|$.

$$
\begin{equation*}
6\|A\|^{2} \geq\|A\|_{H S}^{2}=\frac{1}{5} \sum_{\text {all }}^{35}\|B\|_{H S}^{2} \quad \text { (Averaging) } \tag{0}
\end{equation*}
$$

$6\|A\|^{2} \geq\|A\|_{H S}^{2}=2\left|a_{12}\right|^{2}+\left(\frac{1}{4} \sum_{134-267}^{20}+\frac{1}{6} \sum_{345-567}^{10}\right)\|B\|_{H S}^{2} \quad$ (Constrained Averaging here and below) (row)

$$
\begin{equation*}
6\|A\|^{2} \geq\|A\|_{H S}^{2}=2\left|a_{12}\right|^{2}+2\left|a_{23}\right|^{2}+\left(\frac{1}{4} \sum_{1 \in B, 2 \notin B}^{10}+\frac{1}{3} \sum_{1 \notin B, 2 \in B}^{6}+\frac{1}{4} \sum_{1,2 \notin B, 3 \in B}^{6}+\frac{1}{12} \sum_{1,2,3 \notin B}^{4}\right)\|B\|_{H S}^{2} \tag{12,23}
\end{equation*}
$$

$$
\begin{equation*}
6\|A\|^{2} \geq\|A\|_{H S}^{2}=2\left|a_{12}\right|^{2}+2\left|a_{13}\right|^{2}+\left(\frac{1}{3} \sum_{1 \in B, 2,3 \notin B}^{6}+\frac{1}{4} \sum_{1 \notin B, 2 \in B}^{10}+\frac{1}{6} \sum_{1,2 \notin B}^{10}\right)\|B\|_{H S}^{2} \tag{12,13}
\end{equation*}
$$

$$
\begin{equation*}
6\|A\|^{2} \geq\|A\|_{H S}^{2}=2\left|a_{12}\right|^{2}+2\left|a_{23}\right|^{2}+2\left|a_{34}\right|^{2}+\left(\frac{1}{3} \sum_{135-147, \text { all2 } 2^{\prime} s, 356-367}^{15}+\frac{1}{6} \sum_{156-167,456-467}^{6}+(0) \sum_{567}^{1}\right)\|B\|_{H S}^{2} \tag{12,23,34}
\end{equation*}
$$

Application of constrained averaging:

If $\left|a_{i j}\right| \geq 1($ wlog $i, j=1,2)$ and A satisfies the 3 -compression reduction given above, then by (12),

$$
\begin{aligned}
6\|A\|^{2} & \geq\|A\|_{H S}^{2}=2\left|a_{12}\right|^{2}+\left(\frac{1}{4} \sum_{134-267}^{20}+\frac{1}{6} \sum_{345-567}^{10}\right)\|B\|_{H S}^{2} \\
& \geq 2+\left(\frac{1}{4} \sum_{134-267}^{20}+\frac{1}{6} \sum_{345-567}^{10}\right) \frac{3}{2}\|B\| \\
& \geq 2+\left(\frac{20}{4}+\frac{10}{6}\right) \frac{3}{2}=2+\left(5+\frac{5}{3}\right) \frac{3}{2}=12
\end{aligned}
$$

So $6\|A\|^{2} \geq 12,\|A\| \geq \sqrt{2}, \widetilde{\alpha}_{3}(A) \leq \frac{1}{\sqrt{2}} \approx .7071$, smaller than the $\widetilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right)$ table upper range in $\left[\frac{2}{3}, \frac{2}{\sqrt{7}}\right)=[.6667, .7559)$. This then rules out entries with larger than 1 modulus for an extremal bad paver in case one succeeds in proving $\widetilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right) \in\left(\frac{1}{\sqrt{2}}, \frac{2}{\sqrt{7}}\right)$.

Moreover, since $\frac{1}{\|A\|}=\widetilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right)$, if A were extremal, and wlog $\left|a_{12}\right|=\max _{i, j}\left|a_{i j}\right|$, then $\|A\|^{2}=\frac{1}{\widetilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right)^{2}} \in\left(\frac{7}{4}, \frac{9}{4}\right]$ and

$$
\begin{aligned}
\|A\|^{2} & \geq \frac{1}{6}\|A\|_{H S}^{2}=\frac{1}{3}\left|a_{12}\right|^{2}+\frac{1}{6}\left(\frac{1}{4} \sum_{134-267}^{20}+\frac{1}{6} \sum_{345-567}^{10}\right)\|B\|_{H S}^{2} \\
& \geq \frac{\left|a_{12}\right|^{2}}{3}+\left(\frac{1}{4} \sum_{134-267}^{20}+\frac{1}{6} \sum_{345-567}^{10}\right) \frac{3}{2}\|B\| \\
& \geq \frac{\left|a_{12}\right|^{2}}{3}+\frac{1}{6}\left(\frac{20}{4}+\frac{10}{6}\right) \frac{3}{2}=\frac{\left|a_{12}\right|^{2}}{3}+\frac{5}{3}>\frac{9}{4}
\end{aligned}
$$

leads to the contradiction: $\widetilde{\alpha}_{3}\left(\mathbb{M}_{7, s a}^{0}\right)=\frac{1}{\|A\|}<\frac{2}{3}$. Hence

$$
\left|a_{12}\right|^{2} \leq \frac{27}{4}-5=\frac{7}{4}, \text { i.e., } \max _{i, j}\left|a_{i j}\right| \leq \frac{\sqrt{7}}{2}<\|A\| .
$$

Bibliography

[1] Read and Wilson, An Atlas of Graphs, Clarendon Press, Oxford, 1998.

