Cristian Lenart

State University of New York at Albany

AIM workshop "Buildings and Combinatorial Representation Theory", March 2007

Includes joint work with A. Postnikov (MIT).

Papers: arXiv:math, math.albany.edu/math/pers/lenart

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra \mathfrak{g} .

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra \mathfrak{g} . The definition is in the setup of the corresponding quantum group $U_q(\mathfrak{g})$.

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra $\mathfrak g$. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak g)$.

Crystal graphs partially encode the action of the Chevalley generators of $\mathfrak g$ on the canonical basis of V_λ (Lusztig, Kashiwara).

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra $\mathfrak g$. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak g)$.

Crystal graphs partially encode the action of the Chevalley generators of $\mathfrak g$ on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra $\mathfrak g$. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak g)$.

Crystal graphs partially encode the action of the Chevalley generators of $\mathfrak g$ on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

character formulas;

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra $\mathfrak g$. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak g)$.

Crystal graphs partially encode the action of the Chevalley generators of $\mathfrak g$ on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

- character formulas;
- decomposing tensor products of representations;

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra $\mathfrak g$. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak g)$.

Crystal graphs partially encode the action of the Chevalley generators of $\mathfrak g$ on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

- character formulas;
- decomposing tensor products of representations;
- branching rules;

Defined by Kashiwara, as certain colored directed graphs associated to the irreducible representation V_{λ} (of highest weight λ) of a semisimple Lie algebra $\mathfrak g$. The definition is in the setup of the corresponding quantum group $U_q(\mathfrak g)$.

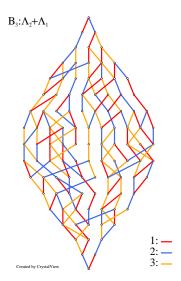
Crystal graphs partially encode the action of the Chevalley generators of $\mathfrak g$ on the canonical basis of V_λ (Lusztig, Kashiwara).

Note. Each monochromatic subgraph is a disjoint union of paths.

Some applications:

- character formulas;
- decomposing tensor products of representations;
- branching rules;
- description of Lusztig's involution (to be mentioned).

A crystal



▶ tableaux - type specific: Kashiwara-Nakashima

- ▶ tableaux type specific: Kashiwara-Nakashima
- path models: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov

- ▶ tableaux type specific: Kashiwara-Nakashima
- path models: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov
- Lusztig's parametrization of his canonical basis: Berenstein-Zelevinsky et al.

- ▶ tableaux type specific: Kashiwara-Nakashima
- ▶ path models: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov
- ► Lusztig's parametrization of his canonical basis: Berenstein-Zelevinsky et al.
- MV polytopes: Kamnitzer.

- tableaux type specific: Kashiwara-Nakashima
- path models: Littelmann, Lakshmibai-Seshadri, Gaussent-Littelmann, L. and Postnikov
- ► Lusztig's parametrization of his canonical basis: Berenstein-Zelevinsky et al.
- MV polytopes: Kamnitzer.

I will present the alcove path model (L. and Postnikov).

Weyl group:

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle = \langle s_i : i = 1, \dots, r \rangle.$$

Length: $\ell(w) = \min \{k : w = s_{i_1} \dots s_{i_k}\}$.

Weyl group:

$$W = \langle s_{\alpha} : \alpha \in \Phi \rangle = \langle s_i : i = 1, \dots, r \rangle.$$

Length: $\ell(w) = \min \{k : w = s_{i_1} \dots s_{i_k}\}$.

Bruhat graph: directed graph on W with labeled edges

$$w \stackrel{\alpha}{\longrightarrow} ws_{\alpha}$$
 if $\ell(ws_{\alpha}) = \ell(w) + 1$.

Alcoves

Hyperplanes $H_{\alpha,k} = \{\lambda : \langle \lambda, \alpha^{\vee} \rangle = k\}$ $(k \in \mathbb{Z})$. Reflection in $H_{\alpha,k}$ denoted by $s_{\alpha,k}$.

Alcoves

Hyperplanes $H_{\alpha,k} = \{\lambda : \langle \lambda, \alpha^{\vee} \rangle = k\}$ $(k \in \mathbb{Z})$. Reflection in $H_{\alpha,k}$ denoted by $s_{\alpha,k}$.

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.

Alcoves

Hyperplanes $H_{\alpha,k} = \{\lambda : \langle \lambda, \alpha^{\vee} \rangle = k\}$ $(k \in \mathbb{Z})$. Reflection in $H_{\alpha,k}$ denoted by $s_{\alpha,k}$.

Alcoves: connected components of $V \setminus (\bigcup H_{\alpha,k})$.

Fundamental alcove:

$$A_\circ = \{\lambda \in V \ : \ 0 < \langle \lambda, \alpha^\vee \rangle < 1 \ \text{ for } \ \alpha \in \Phi^+ \} \,.$$

$$(A_{\circ} = A_0, A_1, \ldots, A_l = A_{\circ} - \lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

$$(A_{\circ} = A_0, A_1, \ldots, A_l = A_{\circ} - \lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i , where $\beta_i \in \Phi^+$.

$$(A_{\circ} = A_0, A_1, \ldots, A_l = A_{\circ} - \lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i , where $\beta_i \in \Phi^+$.

Let $\widehat{r}_i := s_{\beta_i, k_i}$.

$$(A_{\circ}=A_0,A_1,\ldots,A_I=A_{\circ}-\lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i , where $\beta_i \in \Phi^+$.

Let $\widehat{r}_i := s_{\beta_i, k_i}$.

 λ -chain (of roots): $\Gamma = (\beta_1, \dots, \beta_l)$.

$$(A_{\circ} = A_0, A_1, \ldots, A_l = A_{\circ} - \lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i , where $\beta_i \in \Phi^+$.

Let $\widehat{r}_i := s_{\beta_i, k_i}$.

 λ -chain (of roots): $\Gamma = (\beta_1, \dots, \beta_l)$.

Indexing set $\mathcal{A}(\lambda) = \mathcal{A}(\lambda, \Gamma)$ for a basis of V_{λ} ; consists of subsets

$$J = \{j_1 < j_2 < \ldots < j_s\} \subseteq \{1, \ldots, l\}$$

such that we have the following path in the Bruhat graph:

$$1 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} w_2 \dots \xrightarrow{\beta_{j_s}} w_s =: \kappa(J) \text{ (key)}.$$

Such subsets will be called admissible subsets.

$$(A_{\circ}=A_0,A_1,\ldots,A_I=A_{\circ}-\lambda)$$

be a shortest sequence of adjacent alcoves (alcove path).

Let $F_i \subset H_{\beta_i,k_i}$: common wall of A_{i-1} and A_i , where $\beta_i \in \Phi^+$.

Let $\widehat{r}_i := s_{\beta_i, k_i}$.

 λ -chain (of roots): $\Gamma = (\beta_1, \dots, \beta_l)$.

Indexing set $A(\lambda) = A(\lambda, \Gamma)$ for a basis of V_{λ} ; consists of subsets

$$J = \{j_1 < j_2 < \ldots < j_s\} \subseteq \{1, \ldots, l\}$$

such that we have the following path in the Bruhat graph:

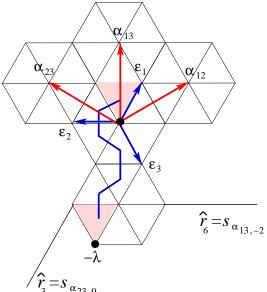
$$1 \xrightarrow{\beta_{j_1}} w_1 \xrightarrow{\beta_{j_2}} w_2 \dots \xrightarrow{\beta_{j_s}} w_s =: \kappa(J) \text{ (key)}.$$

Such subsets will be called admissible subsets.

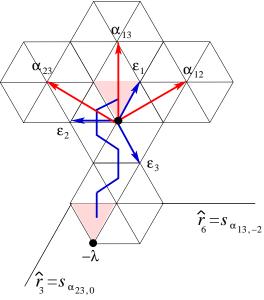
Weight of an admissible subset:

$$\mu(J) := -\widehat{r}_{i_1} \dots \widehat{r}_{i_s}(-\lambda)$$
.

Example. Type A_2 , $\lambda = 3\varepsilon_1 + \varepsilon_2$.

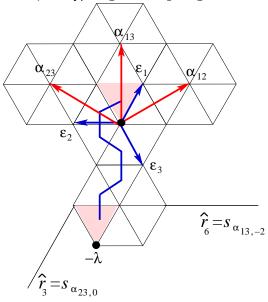


Example. Type A_2 , $\lambda = 3\varepsilon_1 + \varepsilon_2$.



 $J = \{3, 6\}$, saturated chain $e = 123 < t_{23} = 132 < t_{23}t_{13} = 231$.

Example. Type A_2 , $\lambda = 3\varepsilon_1 + \varepsilon_2$.



 $J = \{3, 6\}$, saturated chain $e = 123 < t_{23} = 132 < t_{23}t_{13} = 231$.

 $J=\{6\}$ not admissible: $e < t_{13}=321$.

Theorem. (L. and Postnikov) The irreducible character $ch(V_{\lambda})$ of \mathfrak{g} can be expressed as

$$\mathit{ch}(V_{\lambda}) = \sum_{J \in \mathcal{A}(\lambda)} \mathrm{e}^{\mu(J)} \,.$$

Theorem. (L. and Postnikov) The irreducible character $ch(V_{\lambda})$ of $\mathfrak g$ can be expressed as

$$\mathit{ch}(V_{\lambda}) = \sum_{J \in \mathcal{A}(\lambda)} \mathrm{e}^{\mu(J)} \,.$$

Remark. There is a similar Demazure character formula.

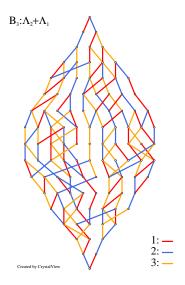
Theorem. (L. and Postnikov) The crystal graph structure corresponding to V_{λ} can be defined combinatorially on $\mathcal{A}(\lambda)$ by directed edges

$$J\mapsto \big(J\setminus\{m\}\big)\cup\{k\}\,.$$

Theorem. (L. and Postnikov) The crystal graph structure corresponding to V_{λ} can be defined combinatorially on $\mathcal{A}(\lambda)$ by directed edges

$$J\mapsto \big(J\setminus\{m\}\big)\cup\{k\}\,.$$

There is a corresponding poset structure on $\mathcal{A}(\lambda)$. Minimum $J_{\min} = \emptyset$ and maximum J_{\max} .



Fact. (Lusztig) $\mathcal{A}(\lambda)$ is a self-dual poset, i.e. there is a bijection $\eta: \mathcal{A}(\lambda) \to \mathcal{A}(\lambda)$ such that

$$J \leq J' \iff \eta(J) \geq \eta(J')$$
.

In particular, $\eta: J_{\min} \leftrightarrow J_{\max}$.

Fact. (Lusztig) $\mathcal{A}(\lambda)$ is a self-dual poset, i.e. there is a bijection $\eta: \mathcal{A}(\lambda) \to \mathcal{A}(\lambda)$ such that

$$J \leq J' \iff \eta(J) \geq \eta(J')$$
.

In particular, $\eta: J_{min} \leftrightarrow J_{max}$.

The map η is given by the action of w_o (longest element of W) on the canonical basis, so

$$\mu(\eta(J)) = w_{\circ}(\mu(J)).$$

Fact. (Lusztig) $A(\lambda)$ is a self-dual poset, i.e. there is a bijection $\eta: A(\lambda) \to A(\lambda)$ such that

$$J \leq J' \iff \eta(J) \geq \eta(J')$$
.

In particular, $\eta: J_{min} \leftrightarrow J_{max}$.

The map η is given by the action of w_o (longest element of W) on the canonical basis, so

$$\mu(\eta(J)) = w_{\circ}(\mu(J)).$$

Goal: describe η explicitly.

Fact. (Lusztig) $A(\lambda)$ is a self-dual poset, i.e. there is a bijection $\eta: A(\lambda) \to A(\lambda)$ such that

$$J \leq J' \iff \eta(J) \geq \eta(J')$$
.

In particular, $\eta: J_{min} \leftrightarrow J_{max}$.

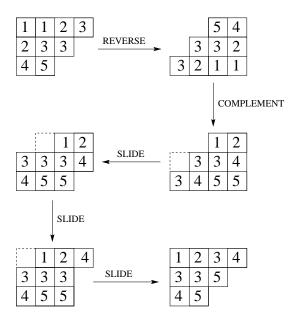
The map η is given by the action of w_o (longest element of W) on the canonical basis, so

$$\mu(\eta(J)) = w_{\circ}(\mu(J)).$$

Goal: describe η explicitly.

In type A, it is given by Schützenberger's evacuation on semistandard Young tableaux (Berenstein and Zelevinsky).

Schützenberger's evacuation



Assume that λ is regular, for simplicity (i.e., $\langle \lambda, \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Phi^+$).

Assume that λ is regular, for simplicity (i.e., $\langle \lambda, \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Phi^+$).

Consider the λ -chain

$$\Gamma := (\beta_{\overline{1}}, \ldots, \beta_{\overline{m}}, \beta_1, \ldots, \beta_l),$$

where $\{eta_{\overline{1}},\ldots,eta_{\overline{m}}\}=\Phi^+$.

Assume that λ is regular, for simplicity (i.e., $\langle \lambda, \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Phi^+$).

Consider the λ -chain

$$\Gamma := (\beta_{\overline{1}}, \dots, \beta_{\overline{m}}, \beta_1, \dots, \beta_l),$$

where $\{eta_{\overline{1}},\ldots,eta_{\overline{m}}\}=\Phi^+$.

Fact:

$$\Gamma^{\mathrm{rev}} := (\beta_{\overline{1}}, \dots, \beta_{\overline{m}}, \beta_{I}, \beta_{I-1}, \dots, \beta_{1})$$

is also a λ -chain.

Assume that λ is regular, for simplicity (i.e., $\langle \lambda, \alpha^{\vee} \rangle > 0$ for all $\alpha \in \Phi^+$).

Consider the λ -chain

$$\Gamma := (\beta_{\overline{1}}, \ldots, \beta_{\overline{m}}, \beta_1, \ldots, \beta_l),$$

where $\{\beta_{\overline{1}},\ldots,\beta_{\overline{m}}\}=\Phi^+$.

Fact:

$$\Gamma^{\text{rev}} := (\beta_{\overline{1}}, \dots, \beta_{\overline{m}}, \beta_{I}, \beta_{I-1}, \dots, \beta_{1})$$

is also a λ -chain.

STEP 1 (REVERSE-COMPLEMENT)

Define a bijection

$$J \in \mathcal{A}(\lambda, \Gamma) \mapsto J^{\text{rev}} \in \mathcal{A}(\lambda, \Gamma^{\text{rev}})$$

such that

$$\mu(J^{\mathrm{rev}}) = w_{\circ}(\mu(J)).$$

Type
$$A_2$$
, $\lambda = 4\varepsilon_1 + 2\varepsilon_2$, $J = \{2, 4\}$,
$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$
$$\Gamma = (\alpha_{12}, \ \alpha_{13}, \ \alpha_{23}, \ \alpha_{13}, \ \underline{\alpha_{12}}, \ \alpha_{13}, \ \underline{\alpha_{23}}, \ \alpha_{13})$$

Type
$$A_2$$
, $\lambda = 4\varepsilon_1 + 2\varepsilon_2$, $J = \{2, 4\}$,
$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\Gamma = (\alpha_{12}, \ \alpha_{13}, \ \alpha_{23}, \ \alpha_{13}, \ \underline{\alpha_{12}}, \ \alpha_{13}, \ \underline{\alpha_{23}}, \ \alpha_{13})$$

Type
$$A_2$$
, $\lambda = 4\varepsilon_1 + 2\varepsilon_2$, $J = \{2, 4\}$,
$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\Gamma = (\alpha_{12}, \ \alpha_{13}, \ \alpha_{23}, \ \alpha_{13}, \ \underline{\alpha_{12}}, \ \alpha_{13}, \ \underline{\alpha_{23}}, \ \alpha_{13})$$

$$J^{\text{rev}} = \{\overline{1}, 2, 4\}$$

Yang-Baxter moves. Let Γ , Γ' be λ -chains related as follows:

$$\Gamma = (\beta_1, \dots, (\beta_i, \beta_{i+1}, \dots, \beta_j), \dots \beta_l) \mapsto \Gamma' = (\beta_1, \dots, (\beta_j, \beta_{j-1}, \dots, \beta_i), \dots \beta_l),$$

where $\{\beta_i, \beta_{i+1}, \dots, \beta_j\} = \overline{\Phi}^+$ of rank 2.

Yang-Baxter moves. Let Γ , Γ' be λ -chains related as follows:

$$\Gamma = (\beta_1, \dots, (\beta_i, \beta_{i+1}, \dots, \beta_j), \dots \beta_l) \mapsto \Gamma' = (\beta_1, \dots, (\beta_j, \beta_{j-1}, \dots, \beta_i), \dots \beta_l),$$

where $\{\beta_i, \beta_{i+1}, \dots, \beta_j\} = \overline{\Phi}^+$ of rank 2. Theorem. (L.) There is a bijection

$$J \in \mathcal{A}(\lambda, \Gamma) \stackrel{\mathsf{YB}}{\mapsto} J' \in \mathcal{A}(\lambda, \Gamma')$$

such that
$$J \setminus [i,j] = J' \setminus [i,j]$$
, $\kappa(J) = \kappa(J')$, $\mu(J) = \mu(J')$.

Yang-Baxter moves. Let Γ , Γ' be λ -chains related as follows:

$$\Gamma = (\beta_1, \dots, (\beta_i, \beta_{i+1}, \dots, \beta_j), \dots \beta_l) \mapsto \Gamma' = (\beta_1, \dots, (\beta_j, \beta_{j-1}, \dots, \beta_i), \dots \beta_l),$$

where $\{\beta_i, \beta_{i+1}, \dots, \beta_j\} = \overline{\Phi}^+$ of rank 2. Theorem. (L.) There is a bijection

$$J \in \mathcal{A}(\lambda, \Gamma) \stackrel{YB}{\mapsto} J' \in \mathcal{A}(\lambda, \Gamma')$$
 such that $J \setminus [i,j] = J' \setminus [i,j]$, $\kappa(J) = \kappa(J')$, $\mu(J) = \mu(J')$. Let $\Gamma^{\mathrm{rev}} = \Gamma_1, \Gamma_2, \dots, \Gamma_k = \Gamma$ be related as above. We have
$$J \in \mathcal{A}(\lambda, \Gamma) \mapsto J^{\mathrm{rev}} = J_1 \in \mathcal{A}(\lambda, \Gamma_1) \stackrel{YB}{\mapsto}$$

 $\stackrel{\mathsf{YB}}{\mapsto} J_2 \in \mathcal{A}(\lambda, \Gamma_2) \stackrel{\mathsf{YB}}{\mapsto} \dots \stackrel{\mathsf{YB}}{\mapsto} J_k = J^* \in \mathcal{A}(\lambda, \Gamma).$

Yang-Baxter moves. Let Γ , Γ' be λ -chains related as follows:

$$\Gamma = (\beta_1, \dots, (\beta_i, \beta_{i+1}, \dots, \beta_j), \dots \beta_l) \mapsto \Gamma' = (\beta_1, \dots, (\beta_j, \beta_{j-1}, \dots, \beta_i), \dots \beta_l),$$

where $\{\beta_i, \beta_{i+1}, \dots, \beta_j\} = \overline{\Phi}^+$ of rank 2. Theorem. (L.) There is a bijection

$$J \in \mathcal{A}(\lambda, \Gamma) \stackrel{\mathsf{YB}}{\mapsto} J' \in \mathcal{A}(\lambda, \Gamma')$$

such that
$$J \setminus [i,j] = J' \setminus [i,j]$$
, $\kappa(J) = \kappa(J')$, $\mu(J) = \mu(J')$.

Let $\Gamma^{\mathrm{rev}} = \Gamma_1, \Gamma_2, \dots, \Gamma_k = \Gamma$ be related as above. We have

$$J \in \mathcal{A}(\lambda, \Gamma) \mapsto J^{\text{rev}} = J_1 \in \mathcal{A}(\lambda, \Gamma_1) \stackrel{\mathsf{YB}}{\mapsto}$$

$$\stackrel{\mathsf{YB}}{\mapsto} J_2 \in \mathcal{A}(\lambda, \Gamma_2) \stackrel{\mathsf{YB}}{\mapsto} \dots \stackrel{\mathsf{YB}}{\mapsto} J_k = J^* \in \mathcal{A}(\lambda, \Gamma).$$

Theorem. (L.) We have $J^* = \eta(J)$.

$$J^{\text{rev}} = \{\overline{1}, 2, 4\}$$

$$\Gamma^{\text{rev}} = (\underline{\alpha_{12}}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\underline{\alpha_{23}}, \quad \alpha_{13}, \quad \underline{\alpha_{12}}), \quad \alpha_{13})$$

$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

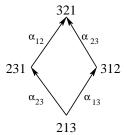
$$\Gamma = (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}), \quad \alpha_{13})$$

$$J^{\text{rev}} = \{\overline{1}, 2, 4\}$$

$$\Gamma^{\text{rev}} = (\underline{\alpha_{12}}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\underline{\alpha_{23}}, \quad \alpha_{13}, \quad \underline{\alpha_{12}}), \quad \alpha_{13})$$

$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\Gamma = (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}), \quad \alpha_{13})$$

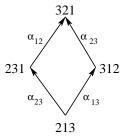


$$J^{\mathrm{rev}} = \{\overline{1}, \, 2, \, 4\}$$

$$\Gamma^{\text{rev}} = (\underline{\alpha_{12}}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\underline{\alpha_{23}}, \quad \alpha_{13}, \quad \underline{\alpha_{12}}), \quad \alpha_{13})$$

$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\Gamma = (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}), \quad \alpha_{13})$$



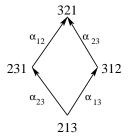
$$J = \{2,4\} \mapsto J^* = \{\overline{1},3,4\}$$

$$J^{\text{rev}} = \{\overline{1}, 2, 4\}$$

$$\Gamma^{\text{rev}} = (\underline{\alpha_{12}}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\underline{\alpha_{23}}, \quad \alpha_{13}, \quad \underline{\alpha_{12}}), \quad \alpha_{13})$$

$$\overline{1} \quad \overline{2} \quad \overline{3} \quad 1 \quad 2 \quad 3 \quad 4 \quad 5$$

$$\Gamma = (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}, \quad \alpha_{13}, \quad (\alpha_{12}, \quad \alpha_{13}, \quad \alpha_{23}), \quad \alpha_{13})$$



$$J=\{2,4\}\mapsto J^*=\{\overline{1},3,4\}$$
 Idea of proof: Show that the map $J\mapsto J^*$ commutes with the directed edges of the crystal graphs as required.