
Conjectures and Open Problems

This document contains conjectures and questions that were either mentioned during the
workshop or included in participants’ contributions.
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1 Some Open Problems and Partial Solutions from the Final Report

The information contained here is excerpted from the final report of mathematical progress
written by Misha Kapovich, Arun Ram, and Monica Vazirani following the workshop.

• Find the MV polytope of an MV cycle from the Littelmann path data. A group centered
around Joel Kamnitzer, James Parkinson, and Jacqui Ramagge formed around this
problem, and they have a conjectured solution they are testing.

• More generally: understand the different combinatorial models involved (such as Knutson-
Tao honeycombs, MV polytopes, Littelmann path models, canonical bases), provide a
dictionary between them, and lay the groundwork to enable researchers to apply these
tools toward a host of related problems. Substantial progress was made toward pieces
of this during the workshop.

• Give an analogue of buildings for complex reflection groups. Arun Ram proposed a
solution of what the building should be. The theory of p-compact groups says that
there is a “p-compact group” X corresponding to each Zp-reflection group and that this
p-compact group X contains a maximal torus T . The “quotient” X/T is an analogue
of the flag variety corresponding to the reflection group. This is a starting point, but
that does not mean we know what the building looks like or how to extract information
from it. Many directions and open problems follow.

• Give an analogue of buildings for noncrystallographic reflection groups. In the case of
a noncrystallographic reflection group, it is known how to construct the graded Hecke
algebra. The graded Hecke algebra is a “degeneration” of the affine Hecke algebra that
contains most of the information of the affine Hecke algebra. One can write a Satake
map for the graded Hecke algebra and use this to compute numbers of triangles in the
corresponding building, even though one does not know a construction of this building.
There are inequalities that one can read off the Schubert calculus.

• Make an explicit correspondence between triangles and hives. Joel Kamnitzer ex-
plained a beautiful proposed solution to this problem using an action of three copies of
the affine Grassmannian on three wedge powers, and a “fake moment map” on these
triples.

• Understand to what extent the inclusions CHecke ⊆ CRep ⊆ CTri are strict, where CHecke

is the cone of structure constants of the spherical Hecke algebra, CRep is the cone of
tensor product multiplicities, and CTri is the cone of triangles in the building.

• Examine and compare the different approaches to the saturation theorem, with an
emphasis on the role of buildings, to get more precise answers (in all types) and improve
the proofs, and possibly also make a sensible Horn conjecture in other types.

• Find an analogue of hives outside the type A case.

• What is the analogue of stretching of paths on the level of points in the affine flag
variety or the loop Grassmannian?
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• Compute when general affine Deligne-Lusztig varieties in the affine flag variety are
nonempty and, if possible, compute their dimension.

• In what way can the combinatorics of path models and MV cycles be applied to the
Langlands program? David Nadler explained that, from the point of view of the
geometric Langlands program, the geometric Satake correspondence ought to be lifted
to an equivalence of categories.

• What is the relation between the moment map and sector retraction? Both of these
operations take T -fixed points to weights and closed sets to convex hulls.
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2 Questions and Conjectures from Misha Kapovich’s overview lecture

More information on the following questions and conjectures can be found in the notes on
Misha Kapovich’s lecture, “Overview of connections between buildings and representation
theory, and open problems.”

Question. What are the restrictions on the side-length vectors of a triangle in a Euclidean
building?

Question. Is there any irredundancy in the triangle inequalities?

Conjecture (Belkale-Kumar). TIBK—Belkale-Kumar inequalities—are irredundant.

Problem (Restricted triangle problem (Hecke problem)). What are the restrictions on the
side-lengths λ, µ, ν ∈ P ∨

+ so that there exists a triangle in the Euclidean building with special
vertices and side-lengths λ, µ, ν?

Problem (Representation Theory problem Rep for G∨). Find necessary and sufficient con-
ditions on λ, µ, ν such that

(V (λ) ⊗ V (µ) ⊗ V (ν))G∨

6= {0},

where V (γ) is the irreducible representation of G∨(C) with the highest weights γ.

Conjecture (Generalized saturation conjecture). Saturation holds for all simply-laced root
systems.

Conjecture (in the non-simply laced case (Knutson-Tao)). Suppose (λ, µ, ν) ∈ C is so that
(λ + µ + ν)(t) = 1 for all t ∈ T such that ZG(C)(t) is semisimple. Here T is the maximal
torus of G(C) and Z(t) denotes the centralizer of t. Then

(λ, µ, ν) ∈ CRep.

Conjecture (Kapovich, Millson). For every root system, the intersection of CRep with the
interior of the cone C is saturated. Moreover, if λ, µ, ν are regular, then

(λ, µ, ν) ∈ CRep ⇐⇒ (λ, µ, ν) ∈ C ∩ L;

i.e.,
CRep ∩ (regular) = C ∩ (regular).
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3 Problem proposed by Cristian Lenart

The category of crystals for complex semisimple Lie algebras is a monoidal category with an
associative tensor product. The crystals A ⊗ B and B ⊗ A are isomorphic (via maps called
commutors), but (a, b) 7→ (b, a) is not a commutor. Henriques and Kamnitzer [1] defined a
commutor σA,B based on an idea of Berenstein. Kamnitzer and Tingley [2] proved that the
action of this commutor on the highest weight elements (which determines it) is given by
Kashiwara’s involution on the Verma crystal. In terms of MV-polytopes, the latter is given
by the “negation” of a polytope. A different explicit description of the commutor, in terms
of an abstract crystal, is given in [4].

The proposed problem below is related to a property of the mentioned commutor, and
can also be viewed as a property of Kashiwara’s involution. It involves the notion of the
key of an element b in a crystal; this is denoted by κ(b), and is a Weyl group element. The
key is a generalization of the Lascoux-Schützenberger key [3], and it specifies the “smallest”
Demazure crystal in which the element b lies (see, e.g., [7]). In terms of the alcove path
model [5, 6], the key is a measure of the “folding” of the alcove path. As such, it is easily
expressed in terms of the “foldings.” One can also define the key recursively, in terms of
an abstract crystal, just based on Kashiwara’s operators Fi and Ei. Let bλ be the highest
weight element of the crystal Bλ, and blow

λ its lowest weight element.

Proposition ([6]). The key κ(bλ) is the identity, and κ(blow
λ ) is the minimal representative of

the coset w◦Wλ (Wλ being the stabilizer of the weight λ). If Fi(b) and Ei(b) are both defined,
then κ(Fi(b)) = κ(b); otherwise, we have κ(Fi(b)) = siκ(b), where si is the corresponding
simple reflection.

Let the commutor σBλ,Bµ
be specified on highest weight elements by

b ⊗ bµ ∈ Bλ ⊗ Bµ 7→ c ⊗ bλ ∈ Bµ ⊗ Bλ .

Conjecture. We have κ(c) = κ(b)−1 in the Weyl group W .
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